
JSON Logs MCP Server
JSON Logs MCP Server
README
JSON Logs MCP Server
A Model Context Protocol (MCP) server that enables Claude Desktop (or any MCP client) to read and analyze JSON-formatted log files. This server provides tools for searching, filtering, aggregating, and analyzing structured log data.
Features
- 📁 Browse log files - List and read JSON-formatted log files
- 🔍 Search and filter - Query logs by level, module, function, message content, and time range
- 📊 Aggregate data - Group and analyze logs by various criteria
- 📈 Statistics - Get comprehensive statistics about your log data
- 🚀 Fast and efficient - Optimized for handling large log files
Prerequisites
- Python 3.11 or higher
- Claude Desktop (or another MCP client)
Installation
- Clone this repository:
git clone https://github.com/mfreeman451/json-logs-mcp-server.git
cd json-logs-mcp-server
- Create a virtual environment:
python3 -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install the package:
pip install -e .
- Create the wrapper script:
cat > run-json-logs-server.sh << 'EOF'
#!/bin/bash
cd "$(dirname "$0")"
source .venv/bin/activate
exec python json_logs_mcp_server.py
EOF
chmod +x run-json-logs-server.sh
Configuration
Configure Log Directory
By default, the server looks for logs in the ./logs
directory relative to where it's run. You can change this by setting an environment variable or editing the code:
Option 1: Environment Variable
export MCP_JSON_LOGS_DIR="/path/to/your/logs"
Configure Claude Desktop
Add the server to your Claude Desktop configuration file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- Linux:
~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"json-logs": {
"command": "/absolute/path/to/run-json-logs-server.sh",
"args": [],
"env": {
"MCP_JSON_LOGS_DIR": "/path/to/your/logs"
}
}
}
}
Important: Use the absolute path to the wrapper script.
Log Format
The server expects JSON log files with one JSON object per line. Each log entry should include these fields:
{
"timestamp": "2024-01-15T10:30:45.123456",
"level": "INFO",
"message": "User authentication successful",
"module": "auth.handler",
"function": "authenticate_user",
"line": 42
}
Required Fields:
timestamp
- ISO format timestamplevel
- Log level (DEBUG, INFO, WARNING, ERROR, CRITICAL)message
- Log messagemodule
- Module namefunction
- Function nameline
- Line number
Sample Log File
Create a file named example.log
with the following content to test the server:
{"timestamp": "2024-01-15T10:30:45.123456", "level": "INFO", "message": "Application started successfully", "module": "main", "function": "startup", "line": 15}
{"timestamp": "2024-01-15T10:30:46.234567", "level": "DEBUG", "message": "Loading configuration from config.json", "module": "config.loader", "function": "load_config", "line": 42}
{"timestamp": "2024-01-15T10:30:47.345678", "level": "INFO", "message": "Database connection established", "module": "db.connection", "function": "connect", "line": 78}
{"timestamp": "2024-01-15T10:31:02.456789", "level": "WARNING", "message": "Rate limit approaching: 85% of quota used", "module": "api.ratelimit", "function": "check_limits", "line": 156}
{"timestamp": "2024-01-15T10:32:15.567890", "level": "ERROR", "message": "Failed to authenticate user: Invalid credentials", "module": "auth.handler", "function": "authenticate_user", "line": 203}
{"timestamp": "2024-01-15T10:32:16.678901", "level": "INFO", "message": "Retry attempt 1/3 for user authentication", "module": "auth.handler", "function": "retry_auth", "line": 215}
{"timestamp": "2024-01-15T10:33:45.789012", "level": "CRITICAL", "message": "Database connection lost: Connection timeout", "module": "db.connection", "function": "health_check", "line": 92}
{"timestamp": "2024-01-15T10:33:46.890123", "level": "INFO", "message": "Attempting database reconnection", "module": "db.connection", "function": "reconnect", "line": 105}
{"timestamp": "2024-01-15T10:33:48.901234", "level": "INFO", "message": "Database connection restored", "module": "db.connection", "function": "reconnect", "line": 112}
{"timestamp": "2024-01-15T10:35:22.012345", "level": "DEBUG", "message": "Cache hit for key: user_session_abc123", "module": "cache.manager", "function": "get", "line": 67}
Python Logger Configuration Example
Here's how to configure a Python logger to output in the required format:
import logging
import json
from datetime import datetime
class JSONFormatter(logging.Formatter):
def format(self, record):
log_obj = {
"timestamp": datetime.fromtimestamp(record.created).isoformat(),
"level": record.levelname,
"message": record.getMessage(),
"module": record.module,
"function": record.funcName,
"line": record.lineno
}
return json.dumps(log_obj)
# Configure logger
logger = logging.getLogger()
handler = logging.FileHandler('app.log')
handler.setFormatter(JSONFormatter())
logger.addHandler(handler)
logger.setLevel(logging.INFO)
# Example usage
logger.info("Application started")
logger.error("Something went wrong")
Available Tools
1. list_log_files
Lists all available log files with metadata.
Example usage in Claude:
- "List all log files"
- "Show me available logs"
2. query_logs
Search and filter log entries.
Parameters:
files
- List of files to search (optional, defaults to all)level
- Filter by log levelmodule
- Filter by module namefunction
- Filter by function namemessage_contains
- Search in message contentstart_time
- Start time filter (ISO format)end_time
- End time filter (ISO format)limit
- Maximum results (default: 100)
Example usage in Claude:
- "Show me all ERROR logs from today"
- "Find logs containing 'database connection'"
- "Show errors from the auth module in the last hour"
- "Search for authentication failures"
3. aggregate_logs
Aggregate log data by specified criteria.
Parameters:
files
- Files to analyze (optional)group_by
- Grouping criteria: "level", "module", "function", or "hour"
Example usage in Claude:
- "Group logs by level"
- "Show me which modules generate the most logs"
- "Analyze log distribution by hour"
- "What's the breakdown of log levels?"
4. get_log_stats
Get comprehensive statistics about log files.
Example usage in Claude:
- "Show me log statistics"
- "What's the overall summary of my logs?"
- "How many errors do I have total?"
Usage Examples
Once configured, you can interact with your logs through Claude Desktop:
Example 1: Finding Errors
You: "Show me all ERROR and CRITICAL logs from the last hour"
Claude: I'll search for ERROR and CRITICAL level logs from the last hour...
[Uses query_logs tool with level and time filters]
Example 2: Analyzing Patterns
You: "Which module is generating the most warnings?"
Claude: Let me analyze the distribution of WARNING logs by module...
[Uses query_logs with level filter, then aggregate_logs grouped by module]
Example 3: Debugging Issues
You: "Find all database connection errors and show me what happened right before them"
Claude: I'll search for database connection errors and their context...
[Uses query_logs to find specific errors and surrounding log entries]
Running Standalone
You can also run the server standalone for testing (MCP Inspector or other MCP clients):
# With stdio transport (default)
python json_logs_mcp_server.py
Troubleshooting
Server won't start
- Check that Python 3.8+ is installed:
python3 --version
- Ensure all dependencies are installed:
pip install -e .
- Verify the log directory exists and contains
.log
files
"spawn python ENOENT" error
- Use
python3
instead ofpython
in your configuration - Use the wrapper script with the full absolute path
- Check that the wrapper script is executable:
chmod +x run-json-logs-server.sh
"Module not found" errors
- Make sure you're using the wrapper script that activates the virtual environment
- Check that dependencies are installed in the venv:
source .venv/bin/activate && pip list
- Reinstall dependencies:
pip install -e .
No logs found
- Verify log files exist in the configured directory
- Check that log files have
.log
extension (files matching*.log*
are found) - Ensure log files are in the correct JSON format (one JSON object per line)
- Try with the sample log file provided above
Tools not appearing in Claude
- Restart Claude Desktop after configuration changes
- Check the "Connect Apps" section in Claude Desktop
- Look for error messages in Claude's developer console
- Ensure the server shows as "Connected" in Claude's UI
Debugging tips
- Run the server manually to see any error messages:
./run-json-logs-server.sh
- Check server output: When running via stdio, diagnostic messages appear on stderr
- Test with a simple log file first using the sample data above
- Verify JSON format: Each line must be valid JSON with all required fields
Performance Considerations
- The server loads log files on-demand, not all at once
- Large log files (>100MB) may take a moment to process
- Use the
limit
parameter in queries to control result size - Consider rotating log files to maintain performance
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
MIT License - see LICENSE file for details
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.