Jira MCP Integration

Jira MCP Integration

Enables AI agents to interact with Jira Cloud through the REST API, supporting project management, issue operations (create, read, update, delete), JQL search, task assignments, and status transitions.

Category
Visit Server

README

πŸ”Œ Jira MCP Integration

Cursor AI and other agents write amazing code. In enterprises, tasks are given in instruments like Jira, GitHub Issues, Azure DevOps. AI needs access to such instruments.

This open-source solution helps AI agents work with Jira data.

🌐 Public Instance

Available at https://jira-mcp.koveh.com

Just provide your Jira credentials. We don't store any data.

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   AI Agent      │────▢│   MCP Server    │────▢│   Jira Cloud    β”‚
β”‚  (Cursor/etc)   │◀────│   jira-mcp      │◀────│   REST API      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Features

  • βœ… Get list of projects
  • βœ… Get list of tasks with details
  • βœ… Get specific task with descriptions
  • βœ… Create new tickets
  • βœ… Update existing tickets
  • βœ… Delete tickets
  • βœ… Search using JQL
  • βœ… Assign tasks to users
  • βœ… Transition task status

Quick Start

Option 1: Use Public Instance

Go to https://jira-mcp.koveh.com and connect with your Jira credentials.

Option 2: Run with Docker

git clone https://github.com/Koveh/jira-mcp.git
cd jira-mcp
docker-compose up -d

Access at http://localhost:4200

Option 3: Run Locally

git clone https://github.com/Koveh/jira-mcp.git
cd jira-mcp
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate
pip install -r requirements.txt
python http_server.py

Get Jira API Token

  1. Go to https://id.atlassian.com/manage-profile/security/api-tokens
  2. Click "Create API token"
  3. Copy the token

Usage

Add to Cursor IDE (Local MCP)

  1. Clone and set up virtual environment:
git clone https://github.com/Koveh/jira-mcp.git
cd jira-mcp

# Create virtual environment (required for mcp package)
python3 -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
  1. Get your Jira API token from: https://id.atlassian.com/manage-profile/security/api-tokens

  2. Add to ~/.cursor/mcp.json (macOS/Linux) or %USERPROFILE%\.cursor\mcp.json (Windows):

{
  "mcpServers": {
    "jira": {
      "command": "/full/path/to/jira-mcp/venv/bin/python",
      "args": ["/full/path/to/jira-mcp/mcp_server.py"],
      "env": {
        "JIRA_BASE_URL": "https://your-domain.atlassian.net",
        "JIRA_EMAIL": "your-email@example.com",
        "JIRA_API_TOKEN": "your-api-token-from-step-2"
      }
    }
  }
}

Important: Use the full path to the Python interpreter inside the venv (venv/bin/python on Linux/macOS, venv\Scripts\python.exe on Windows). This ensures the mcp package is available.

  1. Restart Cursor (Cmd/Ctrl+Shift+P β†’ "Developer: Reload Window")

You'll have these tools available:

Tool Description
jira_connect Connect to Jira instance
jira_get_projects List all projects
jira_get_issues Get issues from project
jira_get_issue Get specific issue details
jira_create_issue Create new issue
jira_update_issue Update existing issue
jira_delete_issue Delete issue
jira_search Search with JQL
jira_get_current_user Get current user info

REST API Usage

# 1. Connect and get token
curl -X POST https://jira-mcp.koveh.com/api/connect \
  -H "Content-Type: application/json" \
  -d '{
    "base_url": "https://your-domain.atlassian.net",
    "email": "your-email@example.com",
    "api_token": "your-api-token"
  }'

# Response includes token for subsequent requests
# {"status": "connected", "token": "eyJ...", ...}

# 2. Use token for API calls
curl https://jira-mcp.koveh.com/api/projects \
  -H "Authorization: Bearer YOUR_TOKEN"

# 3. Create issue
curl -X POST https://jira-mcp.koveh.com/api/issues \
  -H "Authorization: Bearer YOUR_TOKEN" \
  -H "Content-Type: application/json" \
  -d '{"project": "PROJ", "summary": "New task"}'

CLI Usage

export JIRA_BASE_URL=https://your-domain.atlassian.net
export JIRA_EMAIL=your-email@example.com
export JIRA_API_TOKEN=your-api-token

python cli.py whoami                    # Show current user
python cli.py projects                  # List projects
python cli.py list PROJ                 # List issues
python cli.py get PROJ-123              # Get issue details
python cli.py create PROJ "Summary"     # Create issue
python cli.py update PROJ-123 -s "New"  # Update issue
python cli.py delete PROJ-123           # Delete issue
python cli.py search "status='Done'"    # Search with JQL

Python Client

from jira_client import JiraClient, JiraConfig

config = JiraConfig(
    base_url="https://your-domain.atlassian.net",
    email="your-email@example.com",
    api_token="your-api-token"
)

client = JiraClient(config)

# Get projects
projects = client.get_all_projects()

# Create issue
issue = client.create_issue("PROJ", "Summary", "Description")

# Search
results = client.search_issues("status = 'In Progress'")

API Endpoints

Method Endpoint Description
GET /health Health check
POST /api/connect Connect and get token
GET /api/user Get current user
GET /api/projects List all projects
GET /api/issues?project=KEY Get project issues
GET /api/issue/KEY Get issue details
POST /api/issues Create issue
PUT /api/issue/KEY Update issue
DELETE /api/issue/KEY Delete issue
GET /api/search?jql=... Search with JQL

Project Structure

jira-mcp/
β”œβ”€β”€ jira_client.py      # Core Jira API wrapper
β”œβ”€β”€ mcp_server.py       # MCP server (stdio transport)
β”œβ”€β”€ http_server.py      # HTTP/REST server
β”œβ”€β”€ cli.py              # Command-line interface
β”œβ”€β”€ Dockerfile          # Docker image
β”œβ”€β”€ docker-compose.yml  # Docker Compose config
β”œβ”€β”€ requirements.txt    # Python dependencies
β”œβ”€β”€ examples/           # Usage examples
β”‚   β”œβ”€β”€ cursor_mcp_config.json
β”‚   └── api_usage.sh
└── tests/              # Test scripts
    β”œβ”€β”€ test_jira.py
    └── demo.py

Self-Hosting with Docker

# Build and run
docker-compose up -d

# Or manually
docker build -t jira-mcp .
docker run -d -p 4200:4200 --name jira-mcp jira-mcp

With nginx reverse proxy

server {
    server_name jira-mcp.yourdomain.com;
    
    location / {
        proxy_pass http://127.0.0.1:4200;
        proxy_http_version 1.1;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
}

SSL with Certbot

certbot --nginx -d jira-mcp.yourdomain.com

Security

  • πŸ”’ We don't store any credentials or data
  • πŸ”‘ Credentials are only used for direct Jira API calls
  • πŸ“€ Use API tokens (not passwords)
  • πŸ”„ Tokens can be revoked anytime at id.atlassian.com

License

MIT

Author

DHW Team - koveh.com


Made with ❀️ for the AI-powered development community

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured