ISIS MCP

ISIS MCP

A local web scraping MCP server with RAG capabilities that provides intelligent web search, content extraction, and screenshot tools without requiring API keys.

Category
Visit Server

README

ISIS MCP

An open-source MCP (Model Context Protocol) server for local web scraping with RAG capabilities. Provides a free, API-key-free alternative to Apify RAG Web Browser.

Features

  • RAG Tool: Intelligent web search with content extraction (Multi-provider fallback (DuckDuckGo → SearXNG → ScraperAPI) + Mozilla Readability + Markdown conversion)
  • Scrape Tool: Extract content from specific URLs with optional CSS selectors
  • Screenshot Tool: Capture visual snapshots of web pages
  • SQLite Caching: Persistent cache to avoid redundant requests
  • Parallel Processing: Efficiently handle multiple page extractions
  • No API Keys Required: Self-contained, privacy-focused approach

Installation

Step 1: Install Globally

npm install -g isis-mcp

Step 2: Register with Claude Code

claude mcp install isis-mcp -s user

This registers the MCP in user scope (available across all projects).

Important: Restart Claude Code after installation.

Step 3: Search Providers (Auto-configured)

ISIS-MCP uses an automatic fallback chain - no configuration needed:

Priority Provider Config Required Notes
1 DuckDuckGo None Primary, always available
2 SearXNG Local Docker installed Auto-starts container on first use
3 ScraperAPI SCRAPER_API_KEY env var Optional paid fallback
4 Public SearXNG None Free but slower/unreliable

Option A: Docker SearXNG (Recommended)

Just have Docker installed - ISIS-MCP handles the rest:

# Verify Docker is installed
docker --version

# That's it! On first RAG request, ISIS-MCP will:
# 1. Create container "isis-searxng"
# 2. Mount custom config (docker/searxng/settings.yml)
# 3. Start on port 8080
# 4. Wait for ready state

Manual commands:

# Check status
docker ps | grep isis-searxng

# View logs
docker logs isis-searxng

# Restart
docker restart isis-searxng

# Remove (will auto-recreate on next use)
docker rm -f isis-searxng

Option B: ScraperAPI (Optional - Paid Fallback)

  1. Create account at ScraperAPI
  2. Set environment variable:
export SCRAPER_API_KEY="your-key-here"

Make it permanent (add to ~/.zshrc or ~/.bashrc):

echo 'export SCRAPER_API_KEY="your-key-here"' >> ~/.zshrc
source ~/.zshrc

Alternative: Via Claude Code CLI (Legacy)

If you prefer npx-based installation:

claude mcp add isis-mcp -- npx -y github:alucardeht/isis-mcp

For user-level global installation:

claude mcp add -s user isis-mcp -- npx -y github:alucardeht/isis-mcp

Manual Configuration

Add the following to your claude_desktop_config.json:

{
  "mcpServers": {
    "isis-mcp": {
      "command": "npx",
      "args": ["-y", "github:alucardeht/isis-mcp"]
    }
  }
}

Troubleshooting Installation

"All search providers failed"

Cause: No provider configured or available.

Solution:

  1. Configure SearXNG Local (Option A) OR ScraperAPI (Option B)
  2. Verify service is running: curl http://localhost:8080/search?q=test&format=json
  3. If using ScraperAPI, confirm env var: echo $SCRAPER_API_KEY

Slow Performance

Global vs npx comparison:

Method Startup Cache Re-download Recommended
npx isis-mcp ~1-3s NPX cache Yes (3-7 days)
npm install -g ~240ms Persistent Never

If still slow:

  • Is SearXNG Local running?
  • Is ScraperAPI key configured?
  • Are public instances overloaded?

Claude Code Not Detecting MCP

  1. Verify installation: npm list -g isis-mcp
  2. Restart Claude Code completely
  3. Check MCP status: claude mcp list (if available)
  4. Re-run: claude mcp install isis-mcp -s user

Available Tools

rag (Primary Tool)

Web search with intelligent content extraction. Works like Apify RAG Web Browser:

  1. Search via multi-provider fallback (DuckDuckGo → SearXNG → ScraperAPI → Public instances)
  2. Extract content from discovered pages in parallel
  3. Convert to Markdown using Mozilla Readability
  4. Return structured result with caching

Parameters:

  • query (required): Search term
  • maxResults (optional): Maximum number of pages to retrieve (1-10, default: 5)
  • outputFormat (optional): markdown | text | html (default: markdown)
  • useJavascript (optional): Render JavaScript with Playwright (default: false)

Example:

Search for "nodejs best practices" and provide a summary

scrape

Extract content from a specific URL.

Parameters:

  • url (required): Page URL
  • selector (optional): CSS selector for specific element
  • javascript (optional): Render JavaScript before extraction

Example:

Extract the main content from https://nodejs.org/en/learn

screenshot

Capture a screenshot of a web page.

Parameters:

  • url (required): Page URL
  • fullPage (optional): Capture entire page (default: false)
  • width (optional): Viewport width in pixels (default: 1920)
  • height (optional): Viewport height in pixels (default: 1080)

Example:

Take a screenshot of https://example.com

Architecture

ISIS MCP v3.0
├── Search (Multi-provider fallback chain)
├── Docker Auto-Start (SearXNG local container)
├── Extraction (Mozilla Readability + Turndown)
├── Caching (SQLite at ~/.isis-mcp-cache.db)
└── Parallel Processing

The server uses a modular architecture where each component can be extended independently:

  • Search Module: Multi-provider fallback chain (DuckDuckGo → SearXNG → ScraperAPI → Public instances)
  • Docker Integration: Automatic SearXNG container management on port 8080
  • Extraction Module: Uses Mozilla Readability for intelligent content parsing and Turndown for HTML-to-Markdown conversion
  • Cache Layer: SQLite-based persistent cache to minimize redundant requests
  • Processing Pipeline: Parallel extraction of multiple pages for improved performance

Requirements

  • Node.js 20+ - Required
  • Docker (recommended) - For local SearXNG. Auto-starts on first use. Fallback providers work without Docker.
  • Playwright Chromium - Installed automatically

Search Fallback Chain

ISIS-MCP automatically tries providers in order until one succeeds:

DuckDuckGo (Primary)
    ↓ if fails
SearXNG Local (Docker container on port 8080)
    ↓ if fails
ScraperAPI (if SCRAPER_API_KEY configured)
    ↓ if fails
Public SearXNG Instances (7 fallback servers)

Features:

  • Exponential backoff on rate limits
  • User-agent rotation for reliability
  • Automatic Docker container management
  • Graceful degradation to public instances

Token Optimization Features

The RAG tool has been enhanced with progressive token optimization to handle large content efficiently.

Phase 1: Content Modes

Control how much content is returned per result:

// Preview mode - Truncate to ~300 characters (70-80% reduction)
await rag({
  query: "react hooks",
  contentMode: "preview"
})

// Full mode - Complete content (default, backward compatible)
await rag({
  query: "react hooks",
  contentMode: "full"
})

// Summary mode - Intelligent LLM summarization (Phase 3)
await rag({
  query: "react hooks",
  contentMode: "summary"
})

Benefits:

  • preview: Fast, compact results (~6k tokens vs ~20k)
  • full: Complete content (original behavior)
  • summary: Intelligent 150-200 word summaries via LLM

Phase 2: Deferred Content Fetching

Fetch full content after preview using content handles:

// Step 1: Get preview with handle
const preview = await rag({
  query: "react hooks",
  contentMode: "preview",
  maxResults: 5
})

// Each result includes contentHandle (BASE64 of URL)
const handle = preview.results[0].contentHandle

// Step 2: Fetch full content when needed
const full = await fetchFullContent({
  contentHandle: handle,
  outputFormat: "markdown"
})
// Returns: Complete content from cache (1-hour TTL)

Benefits:

  • Lazy loading: Only fetch what you need
  • Cache reuse: No re-scraping required
  • Deterministic handles: Same URL = same handle

Phase 3: Progressive Summarization

Intelligent content summarization using local Ollama LLM.

Setup (Optional - Zero Config)

  1. Install Ollama (if not already):
# macOS/Linux
curl -fsSL https://ollama.ai/install.sh | sh

# Or download from https://ollama.ai
  1. Pull a model (recommended):
ollama pull llama3.2:1b  # Fast, good quality (1.3GB)
# or
ollama pull mistral:7b   # Premium quality, slower (4GB)
  1. Start Ollama (if not running):
ollama serve

Usage

Basic summarization (auto-detection):

const result = await rag({
  query: "react hooks best practices",
  contentMode: "summary"
})
// Auto-detects Ollama, uses llama3.2:1b by default
// Falls back to truncation if Ollama unavailable

Custom model:

const result = await rag({
  query: "python async patterns",
  contentMode: "summary",
  summaryModel: "mistral:7b"
})

Configuration via environment variables:

export OLLAMA_ENDPOINT=http://localhost:11434  # Default
export OLLAMA_MODEL=llama3.2:1b               # Default
export OLLAMA_TIMEOUT=30000                    # Default 30s

Fallback Behavior

  • ✅ Ollama unavailable → Automatic fallback to truncation
  • ✅ Model doesn't exist → Try default, then truncate
  • ✅ Timeout → Fallback to truncation
  • ✅ Zero configuration required - works out of the box

Recommended Models

Model Size Speed Quality Use Case
llama3.2:1b 1.3GB ⭐⭐⭐⭐⭐ ⭐⭐⭐ ✅ Recommended (default)
qwen2.5:0.5b 400MB ⭐⭐⭐⭐⭐ ⭐⭐ Ultra-fast, lighter quality
mistral:7b 4GB ⭐⭐⭐ ⭐⭐⭐⭐ Premium quality

Performance Comparison

Mode Avg Tokens Latency Use Case
full ~20,000 3-5s Complete research
preview ~6,000 3-5s Quick scanning
summary ~1,500 4-8s* Intelligent digests

* With Ollama. Falls back to preview performance if unavailable.

Examples

Research workflow:

// 1. Quick scan with previews
const preview = await rag({
  query: "Next.js 14 features",
  contentMode: "preview",
  maxResults: 10
})

// 2. Get intelligent summary of top result
const summary = await rag({
  query: "Next.js 14 features",
  contentMode: "summary",
  maxResults: 1
})

// 3. Fetch full content for deep dive
const full = await fetchFullContent({
  contentHandle: preview.results[0].contentHandle
})

Troubleshooting:

Q: Summarization seems slow?

# Use faster model
ollama pull qwen2.5:0.5b
export OLLAMA_MODEL=qwen2.5:0.5b

Q: Getting truncated results instead of summaries?

# Check if Ollama is running
curl http://localhost:11434/api/tags

# If not running, start it
ollama serve

Local Development

Clone and Setup

git clone https://github.com/alucardeht/isis-mcp.git
cd isis-mcp
npm install
npx playwright install chromium
npm run build

Testing

echo '{"jsonrpc":"2.0","id":1,"method":"tools/list"}' | node build/index.js

Build Output

Compiled code is output to the build/ directory. Make sure to run npm run build after making changes to the source.

License

Licensed under the Apache License, Version 2.0. See the LICENSE file for full details.

You may obtain a copy of the License at:

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured