Infactory TypeScript SDK
Infactory TypeScript SDK for use with the Infactory Workshop, MCP Server and API
infactory-io
README
Infactory TypeScript SDK
Official TypeScript SDK for interacting with the Infactory AI platform. This SDK allows you to programmatically access and manage your data, projects, and queries through the Infactory API.
Installation
npm install @infactory/infactory-ts
Configuration
Before using the SDK, you need to set up your Infactory API credentials:
- Obtain an API key from the Infactory Workshop
- Use the API key to initialize the client
Quick Start
import { InfactoryClient } from '@infactory/infactory-ts';
// Initialize the client with your API key
const client = new InfactoryClient({
apiKey: 'your-api-key-here',
// Optional: baseURL: 'https://api.infactory.ai' // Use custom API endpoint if needed
});
// Example: Get current user information
async function getCurrentUser() {
const response = await client.users.getCurrentUser();
if (response.error) {
console.error(`Error: ${response.error.message}`);
return null;
}
return response.data;
}
// Example: List all projects
async function listProjects() {
const response = await client.projects.getProjects();
if (response.error) {
console.error(`Error: ${response.error.message}`);
return [];
}
return response.data;
}
Environment Variables
The SDK supports loading configuration from environment variables:
# Required
NF_API_KEY=your-api-key-here
# Optional - defaults to https://api.infactory.ai
NF_BASE_URL=https://api.infactory.ai
You can load these variables from a .env
file using dotenv:
import * as dotenv from 'dotenv';
import { InfactoryClient } from '@infactory/infactory-ts';
// Load environment variables
dotenv.config();
// Create client using environment variables
const client = new InfactoryClient({
apiKey: process.env.NF_API_KEY || '',
});
Available APIs
The SDK provides access to the following Infactory API resources:
- Projects - Create and manage projects
- Teams - Manage teams and team memberships
- Organizations - Access organization information
- Users - User management and authentication
- Auth - API key management
- Chat - Interact with the chat interface
- Datasources - Connect to and manage data sources
- Datalines - Access and transform data
- QueryPrograms - Create, run, and publish queries
- APIs - Deploy and manage API endpoints
- Credentials - Manage connection credentials
- Secrets - Store and manage secrets
- Tasks - Track and manage tasks
- Events - Access event information
Common Workflows
Creating a Project and Uploading Data
// Create a new project
const projectResponse = await client.projects.createProject({
name: 'Stock Analysis Project',
team_id: teamId,
description: 'Project for analyzing stock data',
});
const project = projectResponse.data;
// Create a datasource
const datasourceResponse = await client.datasources.createDatasource({
name: 'Stock Data',
project_id: project.id,
type: 'csv',
});
const datasource = datasourceResponse.data;
// Upload a CSV file (This is a simplified example)
const formData = new FormData();
formData.append('file', fs.createReadStream('./data/stocks.csv'));
// Upload using the datasource
await fetch(
`${client.getBaseURL()}/v1/actions/load/${project.id}?datasource_id=${datasource.id}`,
{
method: 'POST',
headers: {
Authorization: `Bearer ${client.getApiKey()}`,
},
body: formData,
},
);
Working with Query Programs
// Get query programs for a project
const queryProgramsResponse =
await client.queryprograms.getQueryProgramsByProject(projectId);
const queryPrograms = queryProgramsResponse.data;
// Execute a query program
const evaluateResponse =
await client.queryprograms.executeQueryProgram(queryProgramId);
const queryResult = evaluateResponse.data;
// Publish a query program to make it available as an API
await client.queryprograms.publishQueryProgram(queryProgramId);
Accessing APIs
// Get APIs for a project
const apisResponse = await client.apis.getProjectApis(projectId);
const apis = apisResponse.data;
// Get endpoints for an API
const endpointsResponse = await client.apis.getApiEndpoints(apiId);
const endpoints = endpointsResponse.data;
Error Handling
The SDK provides a consistent error handling strategy with specific error classes for different types of errors:
import {
InfactoryClient,
AuthenticationError,
PermissionError,
NotFoundError,
} from '@infactory/infactory-ts';
async function handleErrors() {
try {
const client = new InfactoryClient({ apiKey: 'your-api-key' });
const response = await client.projects.getProject('non-existent-id');
return response.data;
} catch (error) {
if (error instanceof AuthenticationError) {
console.error('Authentication failed. Please check your API key.');
} else if (error instanceof PermissionError) {
console.error('You do not have permission to access this resource.');
} else if (error instanceof NotFoundError) {
console.error('The requested resource was not found.');
} else {
console.error(`Unexpected error: ${error.message}`);
}
}
}
Handling Streaming Responses
Some API endpoints like executeQueryProgram
can return streaming responses. The SDK provides utilities to handle these responses:
import {
InfactoryClient,
isReadableStream,
processStreamToApiResponse,
} from '@infactory/infactory-ts';
async function handleStreamingResponse() {
const client = new InfactoryClient({ apiKey: 'your-api-key' });
// This may return a stream or a regular response
const result = await client.queryprograms.executeQueryProgram(
queryProgramId,
{ stream: true },
);
if (isReadableStream(result)) {
// Process the stream into a regular API response
const apiResponse = await processStreamToApiResponse(result);
return apiResponse.data;
} else {
// Handle regular API response
return result.data;
}
}
Complete Examples
For complete examples, see:
example.ts
- Basic SDK usage examplesinfactory-e2e-test.ts
- End-to-end testing workflow including project creation, data upload, query execution, and API usage
Command Line Tools
To run the included example files:
# Set up your API key
export NF_API_KEY=your-api-key-here
# Run the basic example
npm run example
# Run the end-to-end test
npm run e2e-test
Development
Building from Source
git clone https://github.com/infactory-io/infactory-ts.git
cd infactory-ts
npm install
npm run e2e-test
Testing the SDK
The SDK includes a comprehensive test suite using Jest with several types of tests:
Unit Tests
Unit tests verify individual components of the SDK in isolation:
npm run test:unit
Integration Tests
Integration tests verify how components work together and with the Infactory API:
npm run test:integration
Mock Service Worker Tests
MSW tests simulate API interactions using request interception:
npm run test:msw
Running All Tests
To run the entire test suite:
npm test
Test Coverage
Generate test coverage reports:
npm run test:coverage
Setting Up Tests
For contributors writing tests:
- Unit Tests: Place in
src/__tests__/
and name as*.test.ts
- Integration Tests: Place in
src/__tests__/integration/
directory - MSW Tests: Place in
src/__tests__/msw/
directory
Testing Dependencies
The test suite uses several tools:
- Jest: Test runner and assertion library
- ts-jest: TypeScript support for Jest
- jest-fetch-mock: Mocking fetch requests
- nock: HTTP server mocking
- MSW: API mocking via request interception
License
This Infactory TypeScript SDK is licensed under the MIT License. See the LICENSE file for more details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.