IMDB MCP Server
Provides access to IMDB movie and person data, including searches, cast details, and top-rated lists through the Model Context Protocol. It enables LLMs to fetch structured cinematic metadata and filmographies using the Cinemagoer backend.
README
IMDB MCP Server
A cloud-runnable JSON-RPC service that provides access to IMDB data. Designed to work with LLMs via the MCP (Model Context Protocol).
How It Works
- LLM Configuration: Add the MCP server URL to your LLM's configuration
- Discovery: The LLM queries the server URL to understand available tools
- Query: The LLM sends JSON-RPC requests to fetch IMDB data
- Response: The server returns structured data that the LLM interprets and explains to users
Endpoints
| Endpoint | Method | Description |
|---|---|---|
/ |
GET | HTML documentation (human-readable) |
/info |
GET | Service information (JSON) |
/jsonrpc |
POST | JSON-RPC 2.0 endpoint |
/mcp |
POST | MCP protocol endpoint for LLM tool calling |
/health |
GET | Health check for cloud deployments |
Available Tools
| Tool | Description | Parameters |
|---|---|---|
search_movies |
Search movies by title | query, limit |
get_movie_details |
Get full movie info | movie_id |
search_people |
Search actors/directors | query, limit |
get_person_details |
Get person info/filmography | person_id |
get_top_250_movies |
Get IMDB Top 250 | limit |
get_movie_cast |
Get cast of a movie | movie_id, limit |
JSON-RPC Usage
Send a POST request to /jsonrpc:
{
"jsonrpc": "2.0",
"method": "search_movies",
"params": {"query": "The Matrix", "limit": 5},
"id": 1
}
Response:
{
"jsonrpc": "2.0",
"result": [
{"id": "0133093", "title": "The Matrix", "year": 1999},
{"id": "0234215", "title": "The Matrix Reloaded", "year": 2003}
],
"id": 1
}
LLM MCP Configuration
Add to your LLM's MCP server configuration:
{
"mcpServers": {
"imdb": {
"url": "https://your-deployed-url.com/mcp",
"transport": "http"
}
}
}
Local Development
Run locally
pip install -r requirements.txt
python app.py
Server runs at http://localhost:8080
Run with Docker
docker build -t imdb-mcp .
docker run -p 8080:8080 imdb-mcp
Cloud Deployment
Cloud Foundry
cf push
Uses manifest.yaml configuration.
SAP BTP (Cloud Foundry)
# Build MTA archive
mbt build
# Deploy
cf deploy mta_archives/imdb-mcp-server_1.0.0.mtar
Uses mta.yaml configuration.
Heroku
heroku create imdb-mcp-server
git push heroku main
Uses Procfile and runtime.txt.
Docker (Any Cloud)
# Build
docker build -t imdb-mcp .
# Run
docker run -p 8080:8080 imdb-mcp
# Push to registry
docker tag imdb-mcp your-registry/imdb-mcp:latest
docker push your-registry/imdb-mcp:latest
Google Cloud Run
gcloud run deploy imdb-mcp \
--source . \
--platform managed \
--allow-unauthenticated
AWS App Runner / ECS
Use the Dockerfile with your preferred AWS container service.
Project Structure
imdb-mcp/
├── app.py # FastAPI JSON-RPC server
├── imdb_backend.py # Cinemagoer wrapper
├── server.py # FastMCP server (for local MCP)
├── requirements.txt # Python dependencies
├── pyproject.toml # Project metadata
├── Dockerfile # Container image
├── Procfile # Heroku/PaaS process file
├── runtime.txt # Python version
├── manifest.yaml # Cloud Foundry manifest
├── mta.yaml # SAP BTP MTA descriptor
├── .dockerignore # Docker ignore patterns
└── .cfignore # Cloud Foundry ignore patterns
Environment Variables
| Variable | Default | Description |
|---|---|---|
PORT |
8080 | Server port |
Notes
- Cinemagoer queries IMDB via web scraping, responses may be slower than API-based solutions
- For non-commercial use only (per IMDB terms of service)
- No API key required
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.