imagen-mcp
Enables intelligent multi-provider image generation through OpenAI and Google Gemini APIs with automatic provider selection, support for reference images, real-time data grounding, and conversational refinement.
README
imagen-mcp
A Model Context Protocol (MCP) server for intelligent multi-provider image generation.
Features
- Auto Provider Selection - Analyzes prompts to choose the best provider
- Multi-Provider Support - OpenAI GPT-Image-1 and Google Gemini
- Reference Images - Up to 14 images for character/style consistency (Gemini)
- Real-time Data - Google Search grounding for current info (Gemini)
- Conversational History - Iteratively refine images with context (Gemini)
- High Resolution - Up to 4K output (Gemini)
- Flexible Storage - Save to
~/Downloads/images/or custom locations
Architecture
flowchart TB
subgraph Clients["MCP Clients"]
CD[Claude Desktop]
CC[Claude Code CLI]
GC[Gemini CLI]
CX[Codex CLI]
end
subgraph Server["imagen-mcp Server"]
MCP[MCP Protocol Layer]
subgraph Tools["MCP Tools"]
GI[generate_image]
CI[conversational_image]
LP[list_providers]
LM[list_gemini_models]
end
subgraph Core["Core Components"]
PS[Provider Selector]
PR[Provider Registry]
end
subgraph Providers["Image Providers"]
OAI[OpenAI Provider<br/>GPT-Image-1]
GEM[Gemini Provider<br/>Nano Banana Pro]
end
end
subgraph APIs["External APIs"]
OAPI[OpenAI API]
GAPI[Google Gemini API]
end
subgraph Storage["Local Storage"]
DL[~/Downloads/images/]
end
CD & CC & GC & CX --> MCP
MCP --> Tools
GI & CI --> PS
PS --> PR
PR --> OAI & GEM
OAI --> OAPI
GEM --> GAPI
OAI & GEM --> DL
Provider Comparison
| Feature | OpenAI GPT-Image-1 | Gemini Nano Banana Pro |
|---|---|---|
| Text Rendering | Excellent | Good |
| Photorealism | Good | Excellent |
| Speed | ~60s | ~15s |
| Max Resolution | 1536x1024 | 4K |
| Sizes | 3 options | 1K, 2K, 4K |
| Aspect Ratios | 3 | 10 |
| Reference Images | No | Yes (up to 14) |
| Real-time Data | No | Yes (Google Search) |
Use OpenAI for: Text-heavy images, menus, infographics, comics, diagrams
Use Gemini for: Portraits, product photography, 4K output, reference images
Available Models
OpenAI Models
| Model ID | Description |
|---|---|
gpt-image-1 |
Dedicated image generation model (default) |
gpt-5-image |
GPT-5 with image generation capabilities |
gpt-5.1 |
Latest reasoning model (conversation orchestration) |
Gemini Models
| Model ID | Description |
|---|---|
gemini-3-pro-image-preview |
Nano Banana Pro - highest quality (default) |
gemini-2.0-flash-exp-image-generation |
Fast experimental |
imagen-3.0-generate-002 |
Alternative image model |
Installation
git clone https://github.com/michaeljabbour/imagen-mcp.git
cd imagen-mcp
pip install -r requirements.txt
chmod +x run.sh
Configuration
At least one API key is required. Both are recommended for auto-selection.
Claude Desktop
Edit ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or %APPDATA%\Claude\claude_desktop_config.json (Windows):
{
"mcpServers": {
"imagen": {
"command": "/path/to/imagen-mcp/run.sh",
"args": [],
"env": {
"OPENAI_API_KEY": "sk-...",
"GEMINI_API_KEY": "AI..."
}
}
}
}
Note: Claude Desktop doesn't support
cwd, so use therun.shwrapper script which handles the directory change.
Restart Claude Desktop (Cmd+Q, then reopen) after editing.
Claude Code CLI
Use the CLI to add the server:
claude mcp add -s user imagen /path/to/imagen-mcp/run.sh
Then add environment variables by editing ~/.claude.json:
{
"mcpServers": {
"imagen": {
"type": "stdio",
"command": "/path/to/imagen-mcp/run.sh",
"args": [],
"env": {
"OPENAI_API_KEY": "sk-...",
"GEMINI_API_KEY": "AI..."
}
}
}
}
Verify with:
claude mcp list
Reference: Claude Code MCP Documentation
Gemini CLI
Edit ~/.gemini/settings.json:
{
"mcpServers": {
"imagen": {
"command": "/path/to/imagen-mcp/run.sh",
"args": [],
"env": {
"OPENAI_API_KEY": "sk-...",
"GEMINI_API_KEY": "AI..."
}
}
}
}
Reference: Gemini CLI MCP Documentation
OpenAI Codex CLI
Edit ~/.codex/config.toml:
[mcp_servers.imagen]
command = "/path/to/imagen-mcp/run.sh"
args = []
[mcp_servers.imagen.env]
OPENAI_API_KEY = "sk-..."
GEMINI_API_KEY = "AI..."
Or use the CLI:
codex mcp add imagen -- /path/to/imagen-mcp/run.sh
Reference: Codex MCP Documentation
Generic MCP Client
For any MCP-compatible client:
| Setting | Value |
|---|---|
| Command | /path/to/imagen-mcp/run.sh |
| Args | [] |
| Environment | OPENAI_API_KEY, GEMINI_API_KEY |
The Wrapper Script
The run.sh script handles the working directory requirement:
#!/bin/bash
cd /path/to/imagen-mcp
exec python3 -m src.server "$@"
This is necessary because the server runs as a Python module (-m src.server) which requires being in the project directory.
Usage
Auto Provider Selection
The server analyzes your prompt and selects the best provider:
"Create a menu card for an Italian restaurant" → OpenAI (text rendering)
"Professional headshot with studio lighting" → Gemini (photorealism)
"Infographic about climate change" → OpenAI (diagram + text)
"Product shot of perfume on marble" → Gemini (product photography)
Manual Provider Selection
Override auto-selection with the provider parameter:
generate_image(prompt="...", provider="openai")
generate_image(prompt="...", provider="gemini")
Save Location
Specify a custom save path (directory or filename) with output_path:
# Save to specific directory (auto-generated filename)
generate_image(prompt="...", output_path="~/Desktop/logos/")
# Save to specific file
generate_image(prompt="...", output_path="~/Desktop/logos/my-logo.png")
If output_path is omitted, images are saved to ~/Downloads/images/{provider} by default
(openai or gemini). Override the base directory with the OUTPUT_DIR environment variable
(supports ~ and env vars).
Logs are written to ~/Downloads/images/logs/ by default (or OUTPUT_DIR/logs/ when OUTPUT_DIR
is set).
Gemini-Specific Features
# High resolution
generate_image(prompt="...", size="4K")
# Specific model
generate_image(prompt="...", gemini_model="gemini-2.0-flash-exp-image-generation")
# Reference images (base64 encoded)
generate_image(prompt="...", reference_images=["base64..."])
# Real-time data
generate_image(prompt="Current weather in NYC", enable_google_search=True)
MCP Tools
| Tool | Description |
|---|---|
generate_image |
Main tool with auto provider selection |
conversational_image |
Multi-turn refinement with history |
list_conversations |
List active conversations and their history |
list_providers |
Show available providers and capabilities |
list_gemini_models |
Query available Gemini image models |
Development
# Install dev dependencies
pip install -r requirements.txt
pip install pytest pytest-asyncio
# Run tests
pytest tests/ -v
# Test server loads
python3 -c "from src.server import mcp; print('Server loads')"
# Test providers
python3 -c "from src.providers import get_provider_registry; print(get_provider_registry().list_providers())"
# Check logs (macOS)
tail -f ~/Library/Logs/Claude/mcp-server-imagen.log
Project Structure
imagen-mcp/
├── src/
│ ├── server.py # MCP entry point
│ ├── config/
│ │ ├── constants.py # Provider constants
│ │ └── settings.py # Environment configuration
│ ├── providers/
│ │ ├── base.py # Abstract provider interface
│ │ ├── openai_provider.py # OpenAI implementation
│ │ ├── gemini_provider.py # Gemini implementation
│ │ ├── selector.py # Auto-selection logic
│ │ └── registry.py # Provider factory
│ └── models/
│ └── input_models.py # Pydantic input models
├── tests/
│ ├── test_selector.py # Provider selection tests
│ ├── test_providers.py # Provider unit tests
│ └── test_server.py # Server integration tests
├── .github/
│ └── workflows/
│ └── ci.yml # GitHub Actions CI
├── run.sh # Wrapper script for MCP clients
├── requirements.txt
├── CLAUDE.md
└── README.md
Environment Variables
| Variable | Description | Required |
|---|---|---|
OPENAI_API_KEY |
OpenAI API key | One of these |
GEMINI_API_KEY |
Google Gemini API key | required |
GOOGLE_API_KEY |
Alias for GEMINI_API_KEY | |
DEFAULT_PROVIDER |
Default: "auto" | No |
DEFAULT_OPENAI_SIZE |
Default: "1024x1024" | No |
DEFAULT_GEMINI_SIZE |
Default: "2K" | No |
ENABLE_GOOGLE_SEARCH |
Default: "false" | No |
OUTPUT_DIR |
Default directory for saved images | No |
IMAGEN_MCP_LOG_DIR |
Log directory override | No |
IMAGEN_MCP_LOG_LEVEL |
Log level (e.g. INFO, DEBUG) | No |
IMAGEN_MCP_LOG_PROMPTS |
Log prompts (default: false) | No |
Requirements
mcp>=1.16.0
fastmcp>=2.12.5
pydantic>=2.12.3
httpx>=0.24.0
google-genai>=1.52.0
pillow>=10.4.0
License
MIT
Sources
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.