ILP Drone Delivery MCP Server

ILP Drone Delivery MCP Server

Enables Large Language Models to interact with the ILP Drone Delivery System to plan deliveries, check drone availability, and generate route visualizations. It allows users to manage logistics tasks like capacity planning and temperature requirement matching through natural language.

Category
Visit Server

README

ILP Drone Delivery MCP Server

Model Context Protocol server enabling Large Language Models to interact with the ILP Drone Delivery System through natural language

Overview

This MCP server allows AI assistants like Claude to plan drone deliveries, check availability, and visualize routes using natural language queries instead of manual API calls.

Example usage:

User: "Can you plan a delivery to Edinburgh Castle with 5kg capacity?"
Claude: [Uses MCP tools] "I can send Drone 3, estimated cost $12.50, 45 moves..."

Features

Available Tools

  1. list_available_drones - Get all drones with capabilities
  2. get_drone_details - Get specific drone information
  3. plan_delivery - Plan a single delivery with cost/time estimates
  4. check_drone_availability - Check which drones can handle requirements
  5. get_delivery_geojson - Generate GeoJSON for map visualization
  6. plan_multiple_deliveries - Plan multi-drone delivery routes

Prerequisites

  • Node.js 18+ installed
  • ILP CW2 Service running on http://localhost:8080
  • Claude Desktop (for LLM integration) OR manual testing

๐Ÿ”ง Installation

Step 1: Set Up Project

cd ilp-mcp-server

# Install dependencies
npm install

# Make server executable
chmod +x server.js

# Link globally (for Claude Desktop)
npm link

Step 2: Start Your ILP Service

cd ILPCW2
java -jar target/*.jar app.jar

Verify it's running: curl http://localhost:8080/api/v1/dronesWithCooling/false

Step 3: Test the MCP Server

cd ilp-mcp-server
npm test

Expected output:

๐Ÿงช Testing ILP MCP Server

1๏ธโƒฃ  Testing API connection...
โœ… Connected! Found 8 drones

2๏ธโƒฃ  Testing list_available_drones...
โœ… Success! Retrieved 8 drones

3๏ธโƒฃ  Testing plan_delivery...
โœ… Success! Planned delivery
   Cost: $11.06
   Moves: 26
   Drone: 1

4๏ธโƒฃ  Testing get_delivery_geojson...
โœ… Success! Generated GeoJSON
   Type: FeatureCollection
   Features: 2

โœ… All tests passed! (4/4)

๐Ÿค– Claude Desktop Integration

Configuration

Edit your Claude Desktop config file:

Mac: ~/Library/Application Support/Claude/claude_desktop_config.json

Windows: %APPDATA%\Claude\claude_desktop_config.json

Add this configuration:

{
  "mcpServers": {
    "ilp-drone": {
      "command": "node",
      "args": ["/Users/rheabose/ilp-mcp-server/server.js"]
    }
  }
}

๐Ÿ’ฌ Example Queries

Try these in Claude Desktop:

Basic Queries

"What drones are available?"
"Show me drones with cooling capability"
"Get details for drone 3"

Planning Deliveries

"Plan a delivery to coordinates (-3.188, 55.945) with 4kg capacity"
"I need to deliver 5kg with heating to Edinburgh Castle"
"Can you plan a delivery to (lng: -3.19, lat: 55.94) requiring cooling?"

Checking Availability

"Which drones can handle a 6kg delivery with heating?"
"Check if any drones are available for a 3kg cooled delivery"

Visualization

"Generate a GeoJSON path for a delivery to (-3.188, 55.945) with 4kg capacity"
"Show me the route visualization for a delivery to Edinburgh"

Multi-Delivery

"Plan deliveries to these locations: 
 1. (-3.188, 55.945) - 4kg
 2. (-3.192, 55.943) - 3kg
 3. (-3.185, 55.946) - 5kg"

๐Ÿงช Manual Testing (Without Claude Desktop)

You can test the MCP server manually using the test script:

npm test

Or test individual API calls:

# Test list drones
curl http://localhost:8080/api/v1/dronesWithCooling/false

# Test plan delivery
curl -X POST http://localhost:8080/api/v1/calcDeliveryPath \
  -H "Content-Type: application/json" \
  -d '[{"id":999,"requirements":{"capacity":4.0},"delivery":{"lng":-3.188,"lat":55.945}}]'

๐Ÿ—๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Claude Desktop โ”‚
โ”‚   (LLM Client)  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
         โ”‚ MCP Protocol (stdio)
         โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   MCP Server    โ”‚
โ”‚   (server.js)   โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
         โ”‚ HTTP REST API
         โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  ILP CW2 API    โ”‚
โ”‚  (Spring Boot)  โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ“ Tool Descriptions

list_available_drones

  • Purpose: Get all drones with capabilities
  • Parameters:
    • hasCooling (optional): Filter by cooling capability
  • Returns: List of drones with capacity, features, costs

plan_delivery

  • Purpose: Plan a complete delivery route
  • Parameters:
    • deliveryLng, deliveryLat: Delivery location
    • capacity: Required capacity in kg
    • heating, cooling (optional): Temperature requirements
    • date (optional): Delivery date
  • Returns: Cost, moves, drone assignment, route summary

check_drone_availability

  • Purpose: Find drones matching specific requirements
  • Parameters:
    • capacity: Required capacity
    • heating, cooling (optional): Temperature needs
    • date (optional): Date to check
  • Returns: List of available drone IDs

get_delivery_geojson

  • Purpose: Generate map visualization data
  • Parameters: Delivery location and requirements
  • Returns: GeoJSON with flight paths

๐Ÿ‘ค Author

RheaBose University of Edinburgh - Informatics Large Practical

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured