hypabase

hypabase

A Python library for storing and querying n-ary relationships with provenance tracking. SQLite-backed, zero configuration.

Category
Visit Server

README

Hypabase

CI PyPI Python License Downloads

A Python hypergraph library with provenance and SQLite persistence.

Install

uv add hypabase

Quick example

from hypabase import Hypabase

hb = Hypabase("my.db")

# One edge connecting five entities
hb.edge(
    ["dr_smith", "patient_123", "aspirin", "headache", "mercy_hospital"],
    type="treatment",
    source="clinical_records",
    confidence=0.95,
)

# Query edges involving a node
hb.edges(containing=["patient_123"])

# Find paths between entities
hb.paths("dr_smith", "mercy_hospital")

Features

  • Hyperedges — an edge connects 2+ nodes in a single relationship
  • Provenance — every edge carries source and confidence
  • SQLite persistence — data persists to a local file automatically
  • O(1) vertex-set lookup — find edges by their exact node set
  • Namespace isolation.database("name") for scoped views in a single file
  • Provenance queries — filter by source and min_confidence, summarize with sources()
  • MCP server — 14 tools + 2 resources for AI agent integration
  • CLIhypabase init, hypabase node, hypabase edge, hypabase query

Provenance

Every edge carries source and confidence:

hb.edge(
    ["patient_123", "aspirin", "ibuprofen"],
    type="drug_interaction",
    source="clinical_decision_support_v3",
    confidence=0.92,
)

# Bulk provenance via context manager
with hb.context(source="schema_analysis", confidence=0.9):
    hb.edge(["a", "b"], type="fk")
    hb.edge(["b", "c"], type="fk")

# Query by provenance
hb.edges(source="clinical_decision_support_v3")
hb.edges(min_confidence=0.9)

# Overview of all sources
hb.sources()

Namespace isolation

Isolate data into separate namespaces within a single file:

hb = Hypabase("knowledge.db")

drugs = hb.database("drugs")
sessions = hb.database("sessions")

drugs.node("aspirin", type="drug")
sessions.node("s1", type="session")

drugs.nodes()     # -> [aspirin]
sessions.nodes()  # -> [s1]

What is a hypergraph?

In a regular graph, an edge connects exactly two nodes. In a hypergraph, a single edge — called a hyperedge — can connect any number of nodes at once.

Consider a medical event: Dr. Smith prescribes aspirin to Patient 123 for a headache at Mercy Hospital. In a traditional graph, you'd split this into binary edges — doctor-patient, doctor-drug, patient-hospital — and the fact that they belong to one event becomes an inference, not a structure. A hypergraph stores this natively: one edge connecting all five entities.

This matters because real-world relationships often involve more than two things. A paper has three or four authors, not one. A transaction involves a buyer, a seller, a product, and a payment method. A chemical reaction has reagents and products on both sides. Forcing these into pairs means the grouping becomes implicit.

Why provenance?

When relationships come from different sources — manual entry, LLM extraction, sensor data, clinical records — you need to know where each one came from and how much you trust it. Hypabase tracks this with two fields on every edge: source (a string identifying the origin) and confidence (a float from 0 to 1). You can filter queries by these fields and get a summary of all sources in your graph with hb.sources().

Where hypergraphs show up

  • Knowledge graphs — representing complex real-world relationships without decomposition
  • Agent memory — structured, queryable memory for AI agents that persists across sessions
  • Biomedical data — drug interactions, clinical events, molecular pathways
  • RAG pipelines — storing extracted relationships for retrieval-augmented generation
  • Supply chains, collaboration networks, and anywhere relationships involve more than two things

The broader idea has roots in AI research going back to OpenCog's AtomSpace, which uses hypergraph-like structures to represent knowledge for AGI. More recent work applies hypergraphs specifically to retrieval and reasoning:

MCP server

Hypabase includes an MCP server with 14 tools and 2 resources so AI agents can use it as structured memory. Works with Claude Code, Claude Desktop, Cursor, Windsurf, and any MCP-compatible client.

uv add hypabase[mcp]
hypabase mcp

CLI

uv add hypabase[cli]
hypabase init
hypabase node dr_smith --type doctor
hypabase edge dr_smith patient_123 aspirin --type treatment --source clinical_records
hypabase query --containing dr_smith
hypabase stats

Documentation

docs.hypabase.app

License

Apache 2.0

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured