Hue MCP Server
Enables AI assistants to interact with Hadoop Hue for executing SQL queries using Hive, SparkSQL, or Impala and managing HDFS files. It supports directory browsing, file transfers, and exporting query results to CSV through the Model Context Protocol.
README
Hue MCP Server
An MCP (Model Context Protocol) server that exposes HueClientRest functionality, allowing AI assistants to interact with Hadoop Hue for executing SQL queries and managing HDFS files.
What is This?
This server enables AI assistants (like GitHub Copilot, Claude Desktop, or other MCP-compatible clients) to:
- Execute SQL queries on Hadoop Hue using Hive, SparkSQL, or Impala
- Manage HDFS files (list, upload, download)
- Export query results to CSV files
- Browse and manage directory structures
The Model Context Protocol (MCP) is an open standard for connecting AI assistants to external tools and data sources, making them more powerful and context-aware.
Features
- SQL Query Execution: Execute queries using Hive, SparkSQL, or Impala dialects
- Result Export: Save query results to CSV files with automatic retry on large datasets
- HDFS Operations: List, upload, and download files from HDFS
- Directory Management: Check directory existence and browse file structures
- Robust Error Handling: Built-in retry mechanisms and detailed error reporting
Prerequisites
Before installing this MCP server, you need:
- Python 3.10 or higher - Download Python
- Astral uv - Fast Python package installer and environment manager
- Visual Studio Code - For MCP integration with GitHub Copilot
- GitHub Copilot subscription - Required for VS Code MCP integration
- Access to a Hadoop Hue server - You'll need the host URL, username, and password
Dependencies
This project uses the following key dependencies:
- Astral uv - An extremely fast Python package and project manager, written in Rust. It's 10-100x faster than pip and handles dependency resolution much better.
- mcp[cli] - The official Python SDK for the Model Context Protocol, including CLI tools
- hueclientrest - Python client library for interacting with Hadoop Hue REST API
- pydantic - Data validation using Python type annotations
Installation
Step 1: Install Astral uv
uv is a modern, fast Python package manager that we use for dependency management.
On Windows (PowerShell):
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
On macOS/Linux:
curl -LsSf https://astral.sh/uv/install.sh | sh
After installation, restart your terminal or add uv to your PATH as instructed by the installer.
Verify installation:
uv --version
Step 2: Clone and Install the Project
# Clone the repository
git clone <your-repo-url>
cd hueclientrest-mpc
# Install dependencies and create virtual environment
uv sync
The uv sync command will:
- Create a virtual environment (
.venv) - Install all dependencies from
pyproject.toml - Set up the project for development
Alternative: Using pip
If you prefer pip over uv:
pip install -e .
However, uv is strongly recommended for better performance and dependency management.
Configuration
Environment Variables
The server requires the following environment variables to connect to your Hue server:
| Variable | Required | Description |
|---|---|---|
HUE_HOST |
Yes | Hue server URL (e.g., https://hue.example.com) |
HUE_USERNAME |
Yes | Username for Hue authentication |
HUE_PASSWORD |
Yes | Password for Hue authentication |
HUE_VERIFY_SSL |
No | Verify SSL certificates (default: true) |
HUE_SSL_WARNINGS |
No | Show SSL warnings (default: false) |
Setting Up Environment Variables
Option 1: Using .env file (Recommended for local development)
# Create a .env file in the project root
HUE_HOST=https://your-hue-server.com
HUE_USERNAME=your_username
HUE_PASSWORD=your_password
HUE_VERIFY_SSL=true
HUE_SSL_WARNINGS=false
Option 2: System environment variables
On Windows (PowerShell):
$env:HUE_HOST="https://your-hue-server.com"
$env:HUE_USERNAME="your_username"
$env:HUE_PASSWORD="your_password"
On macOS/Linux:
export HUE_HOST="https://your-hue-server.com"
export HUE_USERNAME="your_username"
export HUE_PASSWORD="your_password"
VS Code Integration with GitHub Copilot
Prerequisites for VS Code Integration
- Visual Studio Code - Download VS Code
- GitHub Copilot extension - Install from VS Code marketplace
- GitHub Copilot subscription - Required for MCP support
- This MCP server installed and configured
Step 1: Locate Your MCP Configuration File
The MCP configuration file location depends on your operating system:
- Windows:
%APPDATA%\Code\User\mcp.json- Full path:
C:\Users\<YourUsername>\AppData\Roaming\Code\User\mcp.json
- Full path:
- macOS:
~/Library/Application Support/Code/User/mcp.json - Linux:
~/.config/Code/User/mcp.json
If the file doesn't exist, create it.
Step 2: Configure the MCP Server in VS Code
Add the following configuration to your mcp.json file:
{
"mcpServers": {
"hue": {
"command": "uv",
"args": [
"run",
"--directory",
"C:\\Projects\\hueclientrest-mpc",
"hue-mcp-server"
],
"env": {
"HUE_HOST": "https://your-hue-server.com",
"HUE_USERNAME": "your_username",
"HUE_PASSWORD": "your_password",
"HUE_VERIFY_SSL": "true",
"HUE_SSL_WARNINGS": "false"
}
}
}
}
Important Notes:
- Replace
C:\\Projects\\hueclientrest-mpcwith the actual path to your project - On Windows, use double backslashes (
\\) or forward slashes (/) in paths - Replace the environment variable values with your actual Hue credentials
- The
commandisuvwhich will use the uv package manager to run the server
Step 3: Verify the Configuration
- Restart VS Code completely (close all windows)
- Open GitHub Copilot Chat (Ctrl+Shift+I or Cmd+Shift+I)
- Check for the Hue MCP tools: Type
@workspaceand look for Hue-related capabilities - Test the connection: Ask Copilot to "list files in HDFS directory /user"
Step 4: Using the MCP Server with Copilot
Once configured, you can ask GitHub Copilot to interact with your Hue server:
Example queries:
- "Execute a Hive query to show tables"
- "List files in HDFS directory /user/data"
- "Download the file /user/data/results.csv from HDFS"
- "Execute this SQL query and save results to CSV: SELECT * FROM my_table LIMIT 100"
Troubleshooting VS Code Integration
Issue: MCP server not appearing in Copilot
- Verify the
mcp.jsonpath is correct - Check that uv is installed and in your PATH
- Restart VS Code completely
- Check VS Code's Output panel (View > Output) and select "GitHub Copilot" from the dropdown
Issue: Authentication errors
- Verify your HUE_HOST, HUE_USERNAME, and HUE_PASSWORD are correct
- Test connectivity to your Hue server directly
- Check if SSL verification is causing issues (try setting HUE_VERIFY_SSL to false for testing)
Issue: Command not found
- Ensure uv is installed: run
uv --versionin terminal - Verify the project path in mcp.json is correct and uses proper escaping
- Make sure you ran
uv syncin the project directory
Alternative: Using Absolute Python Path
If uv is not working or not in your PATH, you can use the absolute path to the Python interpreter:
Windows example:
{
"mcpServers": {
"hue": {
"command": "C:\\Projects\\hueclientrest-mpc\\.venv\\Scripts\\python.exe",
"args": ["-m", "hue_mcp_server.server"],
"env": {
"HUE_HOST": "https://your-hue-server.com",
"HUE_USERNAME": "your_username",
"HUE_PASSWORD": "your_password"
}
}
}
}
macOS/Linux example:
{
"mcpServers": {
"hue": {
"command": "/full/path/to/hueclientrest-mpc/.venv/bin/python",
"args": ["-m", "hue_mcp_server.server"],
"env": {
"HUE_HOST": "https://your-hue-server.com",
"HUE_USERNAME": "your_username",
"HUE_PASSWORD": "your_password"
}
}
}
}
Other Usage Methods
Claude Desktop Integration
If you're using Claude Desktop instead of VS Code, add this to your Claude config (~/.config/claude/claude_desktop_config.json on Mac/Linux or %APPDATA%\Claude\claude_desktop_config.json on Windows):
{
"mcpServers": {
"hue": {
"command": "uv",
"args": ["run", "--directory", "/path/to/hueclientrest-mpc", "hue-mcp-server"],
"env": {
"HUE_HOST": "https://your-hue-server.com",
"HUE_USERNAME": "your_username",
"HUE_PASSWORD": "your_password"
}
}
}
}
Development Mode
Test the server interactively using the MCP inspector:
uv run mcp dev src/hue_mcp_server/server.py
This opens an interactive interface where you can test tools and see requests/responses in real-time.
Direct Command Line Execution
You can also run the server directly:
# Using the installed script (after uv sync)
uv run hue-mcp-server
# Or via Python module
uv run python -m hue_mcp_server.server
Available Tools
SQL Query Tools
hue_execute_query
Execute a SQL query and return results directly.
Arguments:
- statement: SQL statement to execute
- dialect: 'hive', 'sparksql', or 'impala' (default: 'hive')
- timeout: Max wait time in seconds (default: 300)
- batch_size: Rows per batch (default: 1000)
hue_run_query_to_csv
Execute a query and save results to a CSV file.
Arguments:
- statement: SQL statement to execute
- filename: Output CSV filename (default: 'results.csv')
- dialect: SQL dialect (default: 'hive')
- batch_size: Rows per batch (default: 1000)
hue_export_and_download
Execute INSERT OVERWRITE DIRECTORY and download resulting files.
Arguments:
- statement: SQL with INSERT OVERWRITE DIRECTORY
- hdfs_directory: HDFS output directory
- local_directory: Local download directory (default: '.')
- dialect: SQL dialect (default: 'hive')
- file_pattern: Regex to filter files (optional)
- timeout: Max wait time (default: 300)
HDFS File Tools
hue_list_directory
List contents of an HDFS directory.
Arguments:
- directory_path: HDFS path (e.g., '/user/data')
- page_size: Max items to return (default: 1000)
hue_check_directory_exists
Check if an HDFS directory exists.
Arguments:
- directory_path: HDFS path to check
hue_download_file
Download a single file from HDFS.
Arguments:
- remote_path: Full HDFS file path
- local_filename: Local filename (optional)
hue_download_directory
Download all files from an HDFS directory.
Arguments:
- directory_path: HDFS directory path
- local_directory: Local directory (default: '.')
- file_pattern: Regex to filter files (optional)
hue_upload_file
Upload a local file to HDFS.
Arguments:
- local_file_path: Path to local file
- hdfs_destination: HDFS destination directory
How It Works
The Model Context Protocol (MCP)
MCP is an open protocol that standardizes how AI assistants communicate with external tools and data sources. Think of it as a universal adapter that lets AI assistants "plug into" different services.
Key components:
- MCP Server (this project): Exposes tools and capabilities
- MCP Client (VS Code/Claude Desktop): Consumes tools and presents them to the AI
- Protocol: Defines how they communicate
Architecture Flow
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ GitHub │ MCP │ Hue MCP │ REST │ Hadoop Hue │
│ Copilot │◄──────►│ Server │◄──────►│ Server │
│ (VS Code) │Protocol│ (This Project) │ API │ │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ HueClientRest │
│ Library │
└──────────────────┘
- User asks Copilot to query Hue data
- Copilot recognizes the request requires Hue MCP tools
- MCP Server receives the request and translates it to Hue REST API calls
- HueClientRest library handles authentication and API communication
- Results flow back through the chain to the user
Dependency Details
Astral uv (Package Manager)
What it is: A next-generation Python package and project manager written in Rust.
Why we use it:
- Speed: 10-100x faster than pip
- Better dependency resolution: Handles complex dependencies more reliably
- Unified tool: Combines pip, pip-tools, pipx, poetry, pyenv functionality
- Reproducible environments: Lock files ensure consistent installs
- Cross-platform: Works seamlessly on Windows, macOS, and Linux
Key commands:
uv sync- Install/update dependenciesuv add <package>- Add a new dependencyuv run <command>- Run commands in the virtual environmentuv pip install <package>- Use like pip if needed
Learn more: https://docs.astral.sh/uv/
mcp[cli] (Python SDK)
What it is: The official Python SDK for building MCP servers.
Key features:
- FastMCP framework: Simplified server creation with decorators
- Type validation: Pydantic integration for request/response validation
- CLI tools:
mcp devfor testing,mcp installfor setup - Async support: Built on asyncio for efficient I/O
- SSE transport: Server-sent events for real-time communication
In this project:
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("Hue MCP Server")
@mcp.tool()
def hue_execute_query(statement: str, dialect: str = "hive"):
"""Execute SQL query on Hue"""
# Implementation
hueclientrest (Hue Client Library)
What it is: Python client for Hadoop Hue REST API.
Capabilities:
- SQL query execution (Hive, SparkSQL, Impala)
- HDFS file operations
- Session management
- Authentication handling
- Error handling and retries
In this project:
from hueclientrest import HueClientREST
client = HueClientREST(host, username, password)
client.login()
result = client.execute_query(statement, dialect)
pydantic (Data Validation)
What it is: Data validation library using Python type hints.
Why we use it:
- Type safety: Validates tool inputs/outputs at runtime
- Auto-documentation: Generates schemas from type hints
- Error messages: Clear validation errors for debugging
- JSON schema: Automatic schema generation for MCP
In this project:
from pydantic import BaseModel, Field
class QueryResult(BaseModel):
rows: List[dict]
columns: List[str]
row_count: int
Example Usage Scenarios
Scenario 1: Execute a Hive Query
In VS Code with Copilot:
You: "Execute a Hive query to show the first 10 tables"
Copilot: [Uses hue_execute_query tool]
Result: Returns table list from your Hue server
Query executed:
SELECT database_name, table_name
FROM information_schema.tables
LIMIT 10
Scenario 2: List HDFS Files
In VS Code with Copilot:
You: "List all files in /user/hive/warehouse directory"
Copilot: [Uses hue_list_directory tool]
Result: Shows file names, sizes, and permissions
Scenario 3: Export Data to CSV
In VS Code with Copilot:
You: "Query the sales table for 2024 and save to CSV"
Copilot: [Uses hue_run_query_to_csv tool]
Result: Creates sales_2024.csv with query results
Query executed:
SELECT * FROM sales WHERE year = 2024
Scenario 4: Complex Data Pipeline
In VS Code with Copilot:
You: "Check if /user/data/processed exists, if not list /user/data,
then download all CSV files from there"
Copilot:
1. [Uses hue_check_directory_exists]
2. [Uses hue_list_directory]
3. [Uses hue_download_directory with file_pattern=".*\.csv$"]
Result: Downloads all CSV files to local directory
Development
Setting Up for Development
# Clone and install
git clone <your-repo-url>
cd hueclientrest-mpc
uv sync
# Install development dependencies
uv sync --dev
Running Tests
# Run all tests
uv run pytest
# Run with coverage
uv run pytest --cov=hue_mcp_server
# Run specific test file
uv run pytest tests/test_server.py
Adding New Tools
To add a new MCP tool:
- Define the tool function in
server.py:
@mcp.tool()
def hue_new_feature(param: str) -> dict:
"""Description of what this tool does."""
client = get_client()
result = client.some_operation(param)
return {"status": "success", "data": result}
-
The
@mcp.tool()decorator automatically:- Registers the tool with the MCP server
- Generates JSON schema from type hints
- Validates inputs using Pydantic
- Handles errors and responses
-
Test your tool:
uv run mcp dev src/hue_mcp_server/server.py
Debugging
Enable verbose logging:
import logging
logging.basicConfig(level=logging.DEBUG)
Test MCP server directly:
# Interactive testing
uv run mcp dev src/hue_mcp_server/server.py
# Check server can start
uv run python -m hue_mcp_server.server
VS Code debugging:
- Check Output panel: View > Output > GitHub Copilot
- Look for MCP server connection messages
- Check for authentication or network errors
Project Structure
hueclientrest-mpc/
├── .venv/ # Virtual environment (created by uv)
├── pyproject.toml # Project metadata and dependencies
├── README.md # This comprehensive guide
├── .env.example # Example environment variables
├── .gitignore # Git ignore patterns
└── src/
└── hue_mcp_server/
├── __init__.py # Package initialization
└── server.py # MCP server implementation
├── Server setup and configuration
├── Tool definitions (@mcp.tool decorators)
├── Hue client wrapper functions
└── Main entry point
Dependencies Management
View installed packages:
uv pip list
Add a new dependency:
uv add <package-name>
Update dependencies:
uv sync --upgrade
Remove a dependency:
uv remove <package-name>
Security Considerations
Credential Management
Best Practices:
- Never commit credentials to version control
- Use environment variables or secure vaults
- Rotate passwords regularly
- Use .env files for local development only
- Use secrets management (Azure Key Vault, AWS Secrets Manager) in production
SSL/TLS Configuration
For production environments:
# Always verify SSL certificates
HUE_VERIFY_SSL=true
HUE_SSL_WARNINGS=false
For development/testing (self-signed certificates):
# Only for development!
HUE_VERIFY_SSL=false
HUE_SSL_WARNINGS=false
Network Security
- Ensure Hue server is accessible from your development machine
- Check firewall rules if connection fails
- Use VPN if required by your organization
- Keep authentication tokens secure
Troubleshooting Common Issues
Issue: uv command not found
Solution:
# Windows PowerShell
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
# Then restart terminal or add to PATH
Issue: Python version mismatch
Error: requires-python = ">=3.10" but you have Python 3.9
Solution:
# Install Python 3.10+ from python.org
# Or use uv to manage Python versions
uv python install 3.11
uv venv --python 3.11
Issue: MCP server not loading in VS Code
Checklist:
- [ ] uv is installed and in PATH (
uv --version) - [ ] Project dependencies installed (
uv sync) - [ ] mcp.json path is correct for your OS
- [ ] Project path in mcp.json uses proper escaping
- [ ] VS Code completely restarted (all windows closed)
- [ ] GitHub Copilot extension is enabled
- [ ] Active Copilot subscription
Issue: Authentication failures
Error: "Authentication failed" or "401 Unauthorized"
Solution:
- Verify credentials are correct
- Check if Hue server URL is accessible
- Test login directly in browser
- Check for special characters in password (may need escaping)
- Verify user has necessary permissions in Hue
Issue: Query timeouts
Error: "Query execution timeout"
Solution:
# Increase timeout when calling tools
hue_execute_query(
statement="SELECT * FROM large_table",
timeout=600 # 10 minutes instead of default 5
)
Issue: HDFS file not found
Error: "File or directory not found"
Solution:
- Verify path is absolute (starts with
/) - Check permissions on HDFS
- Use
hue_list_directoryto browse available paths - Verify user has read/write permissions
Performance Tips
Query Optimization
- Use batch_size for large result sets:
hue_execute_query(statement="...", batch_size=5000)
- Use LIMIT in queries when exploring:
SELECT * FROM large_table LIMIT 1000
- Export large datasets directly to HDFS:
INSERT OVERWRITE DIRECTORY '/tmp/export'
SELECT * FROM large_table
Then use hue_export_and_download to retrieve files.
HDFS Operations
- Download specific files with patterns:
hue_download_directory(
directory_path="/user/data",
file_pattern=".*\\.csv$" # Only CSV files
)
- Use streaming for large file transfers
- Batch uploads when possible
FAQ
Q: Can I use this with Claude Desktop?
A: Yes! See the "Claude Desktop Integration" section for configuration details.
Q: Does this work on Windows?
A: Yes, fully supported on Windows, macOS, and Linux.
Q: What Hue versions are supported?
A: Any version with REST API support. Tested with Hue 4.x and newer.
Q: Can multiple users share one MCP server?
A: Each user should run their own MCP server instance with their own credentials.
Q: How do I update to the latest version?
A:
git pull
uv sync --upgrade
Q: Is my password secure?
A: Credentials are stored in environment variables or mcp.json. Keep these files secure and never commit them to version control.
Resources
Documentation
- Model Context Protocol Specification
- MCP Python SDK Documentation
- Astral uv Documentation
- HueClientRest Repository
- Pydantic Documentation
Community
Related Projects
Contributing
Contributions are welcome! Please feel free to submit issues or pull requests.
Development Setup
git clone <your-repo-url>
cd hueclientrest-mpc
uv sync --dev
Running Tests
uv run pytest
uv run pytest --cov=hue_mcp_server
Code Style
This project uses:
- Black for code formatting
- isort for import sorting
- mypy for type checking
Changelog
v0.1.0 (Current)
- Initial release
- SQL query execution (Hive, SparkSQL, Impala)
- HDFS file operations
- CSV export functionality
- VS Code and Claude Desktop integration
License
MIT License - See LICENSE file for details
Credits
- HueClientRest - The underlying Python client for Hue REST API
- Model Context Protocol - Open standard for AI-tool integration
- Astral - Creators of uv package manager
- Anthropic - MCP specification and implementation
Support
For issues, questions, or feature requests:
- Check the Troubleshooting section
- Search existing GitHub issues
- Create a new issue with detailed information
Happy querying! 🚀
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.