Homelab MCP Server
Enables Claude to monitor and manage homelab infrastructure including Docker containers, OPNsense firewall, and TrueNAS storage with configurable capability levels from read-only monitoring to full management control.
README
Homelab MCP Server
A remote MCP (Model Context Protocol) server for managing homelab infrastructure. Provides Claude with tools to monitor and manage Docker containers, OPNsense firewall, and TrueNAS storage.
Features
- 4 Capability Levels: From read-only monitoring to full management control
- Docker Management: List, monitor, control containers and Dockge stacks
- OPNsense Integration: Monitor firewall status and restart services
- TrueNAS Integration: Check pool health, manage datasets, create snapshots
- System Monitoring: CPU, memory, disk usage on the host
Quick Start
1. Prerequisites
- Docker and Docker Compose installed on target host (Wharf)
- OPNsense API credentials (optional)
- TrueNAS API key (optional)
- Node.js 20+ (for local development)
2. Setup
# Clone or copy the project to your host
cd homelab-mcp
# Copy example environment file
cp .env.example .env
# Generate a secure API key
openssl rand -hex 32
# Edit .env and add your credentials
nano .env
3. Configuration
Edit .env with your settings:
CAPABILITY_LEVEL=1 # Start with level 1 (read-only)
API_KEY=your-api-key-here # Use the generated key
PORT=3005
# OPNsense (optional)
OPNSENSE_HOST=10.0.0.1
OPNSENSE_API_KEY=your-key
OPNSENSE_API_SECRET=your-secret
# TrueNAS (optional)
TRUENAS_HOST=10.0.0.105
TRUENAS_API_KEY=your-key
4. Build and Deploy
# Build TypeScript
npm install
npm run build
# Build Docker image
docker compose build
# Start the server
docker compose up -d
# Check logs
docker compose logs -f
5. Configure Claude Desktop
Add to your Claude Desktop MCP settings:
{
"mcpServers": {
"homelab": {
"command": "node",
"args": ["/path/to/homelab-mcp/dist/index.js"],
"env": {
"CAPABILITY_LEVEL": "1",
"API_KEY": "your-api-key-here",
"OPNSENSE_HOST": "10.0.0.1",
"OPNSENSE_API_KEY": "your-key",
"OPNSENSE_API_SECRET": "your-secret",
"TRUENAS_HOST": "10.0.0.105",
"TRUENAS_API_KEY": "your-key"
}
}
}
}
Remote Access (Claude Chat)
For accessing the MCP server from Claude Chat (web interface), deploy with HTTP transport:
-
Set environment variables in
.env:PORT=3000 API_KEY=your-generated-key CAPABILITY_LEVEL=1 -
Deploy the container:
docker compose up -d -
Configure reverse proxy (e.g., Traefik, Pangolin, nginx) to route
mcp.handley.iotohttp://localhost:3000 -
Add DNS record pointing
mcp.handley.ioto your server -
In Claude Chat, add the MCP server:
- URL:
https://mcp.handley.io/mcp - Authentication: Bearer token
- Token: Your API_KEY value
- URL:
OAuth 2.0 Authentication (for Claude Chat)
Claude Chat requires OAuth 2.0 for custom connectors. This server supports the Client Credentials flow.
-
Generate OAuth credentials:
# Generate client ID openssl rand -hex 32 # Generate client secret openssl rand -hex 32 -
Add to
.env:OAUTH_CLIENT_ID=your-generated-client-id OAUTH_CLIENT_SECRET=your-generated-client-secret -
In Claude Chat, add the connector:
- Name:
Homelab - Remote MCP server URL:
https://mcp.handley.io/mcp - OAuth Client ID: Your generated client ID
- OAuth Client Secret: Your generated client secret
- Name:
The server will issue access tokens valid for 1 hour. Claude Chat handles token refresh automatically.
Endpoints
When running in HTTP mode:
| Endpoint | Method | Auth | Description |
|---|---|---|---|
/health |
GET | No | Health check, returns status and capability level |
/oauth/token |
POST | No | OAuth 2.0 token endpoint |
/mcp |
POST | Yes | MCP protocol endpoint |
/ |
POST | Yes | Alias for /mcp |
Testing
# Test health endpoint
curl https://mcp.handley.io/health
# Get an access token
curl -X POST https://mcp.handley.io/oauth/token \
-H "Content-Type: application/x-www-form-urlencoded" \
-d "grant_type=client_credentials&client_id=YOUR_CLIENT_ID&client_secret=YOUR_CLIENT_SECRET"
# Use the token
curl https://mcp.handley.io/mcp \
-H "Authorization: Bearer YOUR_ACCESS_TOKEN" \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"tools/list"}'
Capability Levels
| Level | Name | Capabilities |
|---|---|---|
| 1 | Monitor | Read-only: container status, logs, stats, system info, service health |
| 2 | Operate | Level 1 + start/stop/restart containers and services |
| 3 | Configure | Level 2 + read compose files, configs, volumes, networks |
| 4 | Manage | Level 3 + write configs, create/remove containers, exec commands |
Recommendation: Start with Level 1 and increase as needed.
Available Tools
Level 1 - Monitor
docker_list_containers- List all containersdocker_container_logs- Get container logsdocker_container_stats- Get container CPU/memory statssystem_info- Get host system infoopnsense_status- Get OPNsense statustruenas_status- Get TrueNAS pool statustruenas_alerts- Get TrueNAS alerts
Level 2 - Operate
docker_restart_container- Restart a containerdocker_start_container- Start a containerdocker_stop_container- Stop a containeropnsense_service_restart- Restart OPNsense service
Level 3 - Configure
docker_read_compose- Read docker-compose.ymldocker_list_volumes- List Docker volumesdocker_list_networks- List Docker networksdocker_inspect_container- Inspect container detailstruenas_list_datasets- List ZFS datasetstruenas_dataset_info- Get dataset details
Level 4 - Manage
docker_write_compose- Write docker-compose.ymldocker_compose_up- Deploy a stackdocker_compose_down- Remove a stackdocker_exec- Execute command in containertruenas_create_snapshot- Create ZFS snapshot
Development
# Install dependencies
npm install
# Run in development mode
npm run dev
# Build
npm run build
# Type check
npx tsc --noEmit
Security Notes
- The API key should be kept secret and rotated periodically
- Start with the lowest capability level you need
- For Level 4, the
/opt/stacksmount must be:rwinstead of:ro - The container requires access to the Docker socket for container management
- OPNsense and TrueNAS APIs use self-signed certificates by default
Troubleshooting
Container won't start
# Check logs
docker compose logs homelab-mcp
# Common issues:
# - Missing API_KEY in .env
# - Invalid CAPABILITY_LEVEL (must be 1-4)
# - Docker socket not accessible
Tools failing
# Test OPNsense API
curl -k -u "key:secret" https://10.0.0.1/api/core/system/status
# Test TrueNAS API
curl -k -H "Authorization: Bearer YOUR_KEY" https://10.0.0.105/api/v2.0/system/info
# Check network connectivity from container
docker exec homelab-mcp ping 10.0.0.1
Permission issues
If you need Level 4 (write access to stacks), update the volume mount:
volumes:
- /opt/stacks:/opt/stacks:rw # Change from :ro to :rw
License
MIT
Contributing
Issues and pull requests welcome!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
E2B
Using MCP to run code via e2b.