Grok MCP Plugin
Provides seamless access to Grok AI's capabilities (chat completion, image understanding, and function calling) directly from Cline via the Model Context Protocol.
Bob-lance
README
Grok MCP Plugin
A Model Context Protocol (MCP) plugin that provides seamless access to Grok AI's powerful capabilities directly from Cline.
Features
This plugin exposes three powerful tools through the MCP interface:
- Chat Completion - Generate text responses using Grok's language models
- Image Understanding - Analyze images with Grok's vision capabilities
- Function Calling - Use Grok to call functions based on user input
Prerequisites
- Node.js (v16 or higher)
- A Grok AI API key (obtain from console.x.ai)
- Cline with MCP support
Installation
-
Clone this repository:
git clone https://github.com/Bob-lance/grok-mcp.git cd grok-mcp
-
Install dependencies:
npm install
-
Build the project:
npm run build
-
Add the MCP server to your Cline MCP settings:
For VSCode Cline extension, edit the file at:
~/Library/Application Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json
Add the following configuration:
{ "mcpServers": { "grok-mcp": { "command": "node", "args": ["/path/to/grok-mcp/build/index.js"], "env": { "XAI_API_KEY": "your-grok-api-key" }, "disabled": false, "autoApprove": [] } } }
Replace
/path/to/grok-mcp
with the actual path to your installation andyour-grok-api-key
with your Grok AI API key.
Usage
Once installed and configured, the Grok MCP plugin provides three tools that can be used in Cline:
Chat Completion
Generate text responses using Grok's language models:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>chat_completion</tool_name>
<arguments>
{
"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
},
{
"role": "user",
"content": "Hello, what can you tell me about Grok AI?"
}
],
"temperature": 0.7
}
</arguments>
</use_mcp_tool>
Image Understanding
Analyze images with Grok's vision capabilities:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
"image_url": "https://example.com/image.jpg",
"prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
You can also use base64-encoded images:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>image_understanding</tool_name>
<arguments>
{
"base64_image": "base64-encoded-image-data",
"prompt": "What is shown in this image?"
}
</arguments>
</use_mcp_tool>
Function Calling
Use Grok to call functions based on user input:
<use_mcp_tool>
<server_name>grok-mcp</server_name>
<tool_name>function_calling</tool_name>
<arguments>
{
"messages": [
{
"role": "user",
"content": "What's the weather like in San Francisco?"
}
],
"tools": [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"description": "The unit of temperature to use"
}
},
"required": ["location"]
}
}
}
]
}
</arguments>
</use_mcp_tool>
API Reference
Chat Completion
Generate a response using Grok AI chat completion.
Parameters:
messages
(required): Array of message objects with role and contentmodel
(optional): Grok model to use (defaults to grok-2-latest)temperature
(optional): Sampling temperature (0-2, defaults to 1)max_tokens
(optional): Maximum number of tokens to generate (defaults to 16384)
Image Understanding
Analyze images using Grok AI vision capabilities.
Parameters:
prompt
(required): Text prompt to accompany the imageimage_url
(optional): URL of the image to analyzebase64_image
(optional): Base64-encoded image data (without the data:image prefix)model
(optional): Grok vision model to use (defaults to grok-2-vision-latest)
Note: Either image_url
or base64_image
must be provided.
Function Calling
Use Grok AI to call functions based on user input.
Parameters:
messages
(required): Array of message objects with role and contenttools
(required): Array of tool objects with type, function name, description, and parameterstool_choice
(optional): Tool choice mode (auto, required, none, defaults to auto)model
(optional): Grok model to use (defaults to grok-2-latest)
Development
Project Structure
src/index.ts
- Main server implementationsrc/grok-api-client.ts
- Grok API client implementation
Building
npm run build
Running
XAI_API_KEY="your-grok-api-key" node build/index.js
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgements
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.