GraphQL Schema Embedder MCP Server
Indexes GraphQL schemas using embeddings to enable semantic search of types and fields for fast lookup. It allows LLMs to discover relevant schema signatures and execute queries against live GraphQL endpoints.
README
GraphQL schema embedder MCP server
Python MCP server for LLMs that indexes a GraphQL schema, stores embeddings per type->field via an embeddings endpoint, and enables fast lookup plus run_query execution once relevant types are identified to fetch data from your GraphQL endpoint.
Architecture
- GraphQL schema: provide a schema file (SDL) to exercise parsing and indexing.
- Indexer:
schema_indexer.pyflattens the schema intotype.fieldsignatures (with arguments and return types), embeds each summary via the configured embeddings endpoint, and persists todata/metadata.json+data/vectors.npz(normalized embeddings for cosine search). - Server:
server.pyexposes MCP toolslist_typesandrun_query. The server ensures the schema index exists on startup; it only calls the embeddings endpoint when reindexing or embedding a new query. - Persistence:
data/is.gitignore'd so you can regenerate locally without polluting the repo.
Setup
Set env vars. You can start from .env.example.
Environment configuration:
GRAPHQL_EMBED_API_KEY(orOPENAI_API_KEY)GRAPHQL_EMBEDDINGS_URL(full embeddings URL)GRAPHQL_EMBED_MODELGRAPHQL_EMBED_API_KEY_HEADER/GRAPHQL_EMBED_API_KEY_PREFIXGRAPHQL_EMBED_HEADERS(JSON object string for extra headers) Endpoint auth (when usingGRAPHQL_ENDPOINT_URL):GRAPHQL_ENDPOINT_HEADERS(JSON object string, merged with any--headerflags)
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
python3 src/server.py
Run the MCP server
python3 src/server.py # SSE on 127.0.0.1:8000/sse by default
python3 src/server.py --transport sse # explicit SSE
python3 src/server.py --transport streamable-http # Streamable HTTP on 127.0.0.1:8000/mcp
# Or: point at a live GraphQL endpoint (requires introspection enabled)
python3 src/server.py --endpoint https://api.example.com/graphql
# Endpoint auth headers (repeat --header)
python3 src/src/server.py --endpoint https://api.example.com/graphql --header "Authorization: Bearer $TOKEN"
# Options: --host 0.0.0.0 --port 9000 --log-level DEBUG --mount-path /myapp
Tools:
list_types(query, limit=5)– fuzzy search overtype.fieldsignatures (embeddings; auto-build index if missing). Results are ordered withQueryfields first and include aquery_templateforQueryfields plus aselection_hintfor object fields.run_query(query)– if--endpointis set, proxies the query to the endpoint; otherwise validates/runs against the local schema (no resolvers; primarily for validation/shape checking, data resolves to null). Both indexing and querying use the same embedding model (text-embedding-3-smallby default, override via config/env or--model).
Example list_types output:
[
{
"type": "Query",
"field": "users",
"summary": "Query.users(limit: Int = 10, offset: Int = 0) -> [User!]!",
"query_template": "query { users(limit: <Int = 10>, offset: <Int = 0>) { id name email profile { joinedAt preferences { newsletter } } orders { id status total } } }"
},
{
"type": "User",
"field": "orders",
"summary": "User.orders -> [Order!]!",
"selection_hint": "orders { id status total items { quantity subtotal } }"
},
{
"type": "Product",
"field": "reviews",
"summary": "Product.reviews -> [Review!]!",
"selection_hint": "reviews { id rating title author { id name } }"
}
]
Notes:
python3 src/server.pydefaults to thessetransport; pass--transport streamable-httpif you want HTTP instead.- You can also set env vars prefixed with
FASTMCP_(e.g.,FASTMCP_HOST,FASTMCP_PORT,FASTMCP_LOG_LEVEL) to override defaults. - The server exposes MCP
instructions(override withMCP_INSTRUCTIONS) that describe the server as an abstraction layer and tell the LLM to uselist_typesthenrun_querywith minimal tool calls.
Quick test with the MCP Inspector
Requires npm/npx on PATH.
Connect to an already-running SSE server
In one terminal (start the server):
python3 src/server.py --transport sse --port 8000
In another terminal (start the Inspector and point it at /sse):
npx @modelcontextprotocol/inspector --transport sse --server-url http://127.0.0.1:8000/sse
Configure in Claude Desktop / CLI
If you're running this server locally over SSE (default), point Claude at the /sse URL.
claude mcp add --transport sse graphql-mcp http://127.0.0.1:8000/sse
You can also configure via JSON (e.g. config file):
{
"mcpServers": {
"graphql-mcp": {
"type": "sse",
"url": "http://127.0.0.1:8000/sse"
}
}
}
If you expose this server behind auth, pass headers:
claude mcp add --transport sse private-graphql http://127.0.0.1:8000/sse \
--header "Authorization: Bearer your-token-here"
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.