Graph-Tools

Graph-Tools

Provides tools for AI-powered graph analysis, including relationship extraction, adjacency matrix creation, and network centrality calculations. It enables users to perform complex structural analysis and generate interactive D3.js visualizations from structured data.

Category
Visit Server

README

Graph Tools - Interactive Graph Analysis Toolkit

A comprehensive Ruby-based graph analysis toolkit with web visualizations and MCP server for AI-powered graph analysis.

šŸš€ Features

Core Graph Operations

  • Adjacency Matrix Support - Load from CSV, JSON, or TXT files
  • Graph Algorithms - DFS, BFS, neighbor finding with visual feedback
  • Multiple Export Formats - CSV matrices, JSON, interactive HTML
  • Command Line Interface - Full-featured CLI for batch operations

Interactive Visualizations

  • Enhanced Graph Visualizer - D3.js force-directed layouts with real-time interactions
  • Algorithm Visualization - Visual highlighting for DFS/BFS traversals
  • Interactive Editing - Add/remove nodes and edges with drag-and-drop
  • Matrix Export - Custom filename support for adjacency matrix downloads
  • Graph Statistics - Real-time node count, edge count, and density calculations

AI Integration

  • MCP Server - HTTP REST API and Claude Desktop MCP server
  • Automatic Visualization - Generate interactive graphs from structured data
  • Smart Data Processing - Extract relationships from various data formats
  • Centrality Analysis - Calculate degree, betweenness, closeness, eigenvector centrality

šŸ“¦ Installation

Prerequisites

  • Ruby 2.7+ - Core graph operations
  • Node.js 16+ - MCP server functionality
  • Modern web browser - For interactive visualizations

Setup

git clone https://github.com/dromologue/Graph-Tools.git
cd Graph-Tools

# For local CLI usage
gem install

# Install MCP server dependencies
cd mcp-graph-server
npm install
cd ..

# For web application
npm install

šŸ”§ Usage

Command Line Interface

# Basic graph visualization
ruby graph_cli.rb matrix.csv

# With custom vertex labels
ruby graph_cli.rb -v "A,B,C,D" matrix.csv

# Run graph algorithms
ruby graph_cli.rb --dfs A --bfs B matrix.csv

# Export to web visualization
ruby graph_cli.rb -d matrix.csv

# Export to JSON
ruby graph_cli.rb -j output.json matrix.csv

Interactive Visualizer

Local Usage:

  1. Open Files/enhanced-graph-visualizer.html in your browser
  2. Load sample data or create your own graph
  3. Run DFS/BFS operations with visual highlighting
  4. Export matrices with custom filenames

Web Application:

  1. Run npm start and visit http://localhost:3000
  2. Upload matrix files via drag-and-drop
  3. Try sample data for quick testing
  4. Get real-time analysis results

MCP Server Integration

HTTP REST API Mode

cd mcp-graph-server
npm run api
# Server runs on http://localhost:3001

Claude Desktop Mode

  1. Configure Claude Desktop (~/Library/Application Support/Claude/claude_desktop_config.json):
{
  "mcpServers": {
    "graph-server": {
      "command": "node",
      "args": ["/path/to/Graph-Tools/mcp-graph-server/api-server.js"],
      "env": {
        "SERVER_MODE": "mcp"
      }
    }
  }
}
  1. Use natural language in Claude Desktop:
Analyze these relationships and create a graph visualization:
[
  {"id": "Alice", "friends": ["Bob", "Carol"]},
  {"id": "Bob", "friends": ["Alice", "David"]},
  {"id": "Carol", "friends": ["Alice"]},
  {"id": "David", "friends": ["Bob"]}
]

šŸ“ Project Structure

Graph-Tools/
ā”œā”€ā”€ graph.rb                           # Core Graph class
ā”œā”€ā”€ graph_cli.rb                       # Command line interface
ā”œā”€ā”€ server.js                          # Web application server
ā”œā”€ā”€ Files/                             # Visualization files directory
│   └── enhanced-graph-visualizer.html # Interactive D3.js visualizer
ā”œā”€ā”€ public/                            # Web application files
│   ā”œā”€ā”€ index.html                     # Main web interface
│   └── mcp-documentation.html         # API documentation
ā”œā”€ā”€ mcp-graph-server/                  # MCP server
│   ā”œā”€ā”€ api-server.js                  # Dual-mode MCP/HTTP server
│   ā”œā”€ā”€ index.js                       # Original MCP server
│   ā”œā”€ā”€ package.json                   # Node.js dependencies
│   ā”œā”€ā”€ claude-config-example.json     # Claude Desktop config example
│   └── data/                          # Generated files (matrices, visualizations)
ā”œā”€ā”€ Gemfile                            # Ruby dependencies
ā”œā”€ā”€ package.json                       # Node.js web server dependencies
└── README.md                          # This file

API Endpoints

The MCP server provides both MCP protocol and HTTP REST API:

  • POST /api/analyze-relationships - Extract relationships from data
  • POST /api/create-adjacency-matrix - Build matrices from relationship pairs
  • POST /api/calculate-centrality - Compute network centrality measures
  • POST /api/analyze-network-structure - Comprehensive network analysis
  • GET /health - Health check endpoint

See /mcp-documentation.html for complete API documentation with examples.

Quick Start

1. Create a Graph Visually

# Open the Enhanced Graph Visualizer
open "Files/enhanced-graph-visualizer.html"

In the enhanced visualizer:

  • Add vertices by typing names and clicking "Add Node"
  • Click two nodes to select them, then click "Add Edge"
  • Drag nodes to reposition them
  • Run DFS/BFS operations and see visual highlights
  • Export as CSV matrix when done

2. Analyze Your Graph

# Basic analysis
ruby graph_cli.rb your_graph.csv

# With custom vertex names  
ruby graph_cli.rb -v "Alice,Bob,Carol,David" your_graph.csv

# Specific operations
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --dfs Alice your_graph.csv
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --bfs Bob your_graph.csv
ruby graph_cli.rb -v "Alice,Bob,Carol,David" --neighbors Carol your_graph.csv

3. Export for Visualization

# Export for D3.js editor (interactive)
ruby graph_cli.rb -v "Alice,Bob,Carol,David" -d your_graph.csv

# Export JSON for programmatic use
ruby graph_cli.rb -v "Alice,Bob,Carol,David" -j output.json your_graph.csv

Command Reference

CLI Options

ruby graph_cli.rb [options] matrix_file

Options:
  -v, --vertices LABELS    # Comma-separated vertex labels
  -f, --format FORMAT      # Output format (text, matrix, json)
  -j, --export-json FILE   # Export to JSON file
  -d, --d3                # Export for D3.js visualization
  --dfs VERTEX            # Perform DFS traversal
  --bfs VERTEX            # Perform BFS traversal  
  --neighbors VERTEX      # Show neighbors
  --path FROM,TO          # Check edge existence

Supported File Formats

  • CSV: 0,1,0\n1,0,1\n0,1,0
  • TXT: 0 1 0\n1 0 1\n0 1 0 (space-separated)
  • JSON: {"matrix": [[0,1,0],[1,0,1],[0,1,0]]}

MCP Server Tools

The MCP server provides these tools for AI assistants:

  • analyze_relationships - Extract relationships from structured data and create visualizations
  • create_adjacency_matrix - Build matrices from relationship pairs
  • calculate_centrality - Compute network centrality measures (degree, betweenness, closeness, eigenvector)
  • analyze_network_structure - Comprehensive network analysis combining relationship extraction and centrality

Performance

  • Graph creation: Sub-second for graphs up to 100 nodes
  • DFS/BFS: Linear time complexity O(V + E)
  • Visualization: Handles 50+ nodes smoothly in D3.js
  • File formats: All formats (CSV, JSON, TXT) supported efficiently
  • HTTP API: Fast response times for network analysis

Error Handling

The tools provide comprehensive error handling for:

  • Invalid matrix formats
  • Non-existent vertices in operations
  • Malformed input files
  • Missing dependencies
  • API validation errors

Contributing

The codebase follows clean architecture principles with separation of concerns:

  • Core graph operations in Ruby
  • Web interface with modern JavaScript
  • MCP server for AI integration
  • Comprehensive API documentation

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured