Grafana-Loki MCP Server

Grafana-Loki MCP Server

Enables querying and formatting Loki logs from Grafana via the Model Context Protocol. It supports LogQL queries, label retrieval, and provides results in text, JSON, or markdown formats.

Category
Visit Server

README

Grafana-Loki MCP Server

Test PyPI version codecov License: MIT

A FastMCP server that allows querying Loki logs from Grafana.

MCP Server Settings

{
  "mcpServers": {
    "loki": {
      "command": "uvx",
      "args": [
        "grafana-loki-mcp",
        "-u",
        "GRAFANA_URL",
        "-k",
        "GRAFANA_API_KEY"
      ]
    }
  }
}
  • GRAFANA_URL: URL of your Grafana instance
  • GRAFANA_API_KEY: Grafana API key with appropriate permissions

Features

  • Query Loki logs through Grafana API
  • Get Loki labels and label values
  • Format query results in different formats (text, JSON, markdown)
  • Support for both stdio and SSE transport protocols

Requirements

  • Python 3.10+
  • FastMCP
  • Requests

Installation

Using pip

pip install grafana-loki-mcp

Development Setup

  1. Clone this repository
  2. Install dependencies using uv:
# Install uv
pip install uv

# Create and activate virtual environment
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dependencies
uv pip install -e ".[dev]"

Usage

Environment Variables

Set the following environment variables:

  • GRAFANA_URL: URL of your Grafana instance
  • GRAFANA_API_KEY: Grafana API key with appropriate permissions

Command Line Arguments

You can also provide these values as command line arguments:

grafana-loki-mcp -u https://your-grafana-instance.com -k your-api-key

Additional options:

  • --transport: Transport protocol to use (stdio or sse, default: stdio)

Running the Server

# Using environment variables
export GRAFANA_URL=https://your-grafana-instance.com
export GRAFANA_API_KEY=your-api-key
grafana-loki-mcp

# Using command line arguments
grafana-loki-mcp -u https://your-grafana-instance.com -k your-api-key

# Using SSE transport
grafana-loki-mcp --transport sse

Development

Testing

Run the test suite:

pytest

Run with coverage:

pytest --cov=. --cov-report=term

Linting and Formatting

# Run ruff linter
ruff check .

# Run black formatter
black .

# Run type checking
mypy .

Available Tools

query_loki

Query Loki logs through Grafana.

Parameters:

  • query: Loki query string
  • start: Start time (ISO format, Unix timestamp, or Grafana-style relative time like 'now-1h', default: 1 hour ago)
  • end: End time (ISO format, Unix timestamp, or Grafana-style relative time like 'now', default: now)
  • limit: Maximum number of log lines to return (default: 100)
  • direction: Query direction ('forward' or 'backward', default: 'backward')
  • max_per_line: Maximum characters per log line (0 for unlimited, default: 100)

get_loki_labels

Get all label names from Loki.

get_loki_label_values

Get values for a specific label from Loki.

Parameters:

  • label: Label name

format_loki_results

Format Loki query results in a more readable format.

Parameters:

  • results: Loki query results from query_loki
  • format_type: Output format ('text', 'json', or 'markdown', default: 'text')
  • max_per_line: Maximum characters per log line (0 for unlimited, default: 0)

Example Usage

# Example client code
from mcp.client import Client

async with Client() as client:
    # Query Loki logs with max_per_line limit
    results = await client.call_tool(
        "query_loki",
        {
            "query": '{app="my-app"} |= "error"',
            "limit": 50,
            "max_per_line": 100,  # Limit log lines to 100 characters
            "start": "now-6h",    # Grafana-style relative time: 6 hours ago
            "end": "now"          # Current time
        }
    )

    # Format the results
    formatted = await client.call_tool(
        "format_loki_results",
        {
            "results": results,
            "format_type": "markdown",
            "max_per_line": 100  # Can also limit at formatting time
        }
    )

    print(formatted)

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured