GPT-5 MCP Server

GPT-5 MCP Server

Enables GPT-5 inference via OpenAI API with configurable reasoning effort, verbosity levels, and optional web search integration. Supports per-call parameter overrides for flexible AI model interactions through MCP.

Category
Visit Server

README

GPT-5 MCP Server (TypeScript)

An MCP server that exposes a gpt5_query tool for GPT-5 inference via OpenAI Responses API, with optional Web Search Preview. Supports per-call overrides for verbosity, reasoning effort, and other parameters.

日本語はこちら

Features

  • TypeScript MCP server using @modelcontextprotocol/sdk
  • gpt5_query tool
    • web_search_preview integration (optional)
    • verbosity (low|medium|high)
    • reasoning.effort (low|medium|high)
    • tool_choice (auto|none), parallel_tool_calls
    • system prompt, model, max_output_tokens
  • Config via environment variables with per-call overrides

Quick Start

  1. Install dependencies
pnpm i # or npm i / yarn
  1. Configure environment

Create .env (or export env vars):

OPENAI_API_KEY=sk-...
OPENAI_MODEL=gpt-5
OPENAI_MAX_RETRIES=3
OPENAI_TIMEOUT_MS=60000
REASONING_EFFORT=medium
DEFAULT_VERBOSITY=medium
WEB_SEARCH_DEFAULT_ENABLED=false
WEB_SEARCH_CONTEXT_SIZE=medium
  1. Build and run
pnpm run build
pnpm start

For development (watch mode):

pnpm run dev

Using with MCP Clients (Claude Code, Claude Desktop)

This server speaks Model Context Protocol (MCP) over stdio and emits pure JSON to stdout, making it safe for Claude Code and Claude Desktop.

Prerequisites

  • Node.js 18+
  • OpenAI API key via .env or environment variable
  1. Build
pnpm run build
  1. Run directly (recommended)
  • Command: node
  • Args: dist/cli.js
  • CWD: repository root (required if you want .env to be loaded)

Example:

node dist/cli.js
  1. Add to Claude Code (VS Code)
  • Command Palette → "Claude: Manage MCP Servers"
  • "Add server" with:
    • Name: gpt5-mcp
    • Command: node (or absolute path, e.g., /opt/homebrew/bin/node)
    • Args: ["/absolute/path/to/gpt5-mcp-server/dist/cli.js"] (or just gpt5-mcp-server if installed globally)
    • Env (choose one):
      • Option A (ENV_FILE): ENV_FILE=/absolute/path/to/gpt5-mcp-server/.env
      • Option B (explicit): set OPENAI_API_KEY, OPENAI_MODEL, OPENAI_TIMEOUT_MS, DEFAULT_VERBOSITY, REASONING_EFFORT, WEB_SEARCH_DEFAULT_ENABLED, WEB_SEARCH_CONTEXT_SIZE
  1. Add to Claude Desktop Edit config (e.g., macOS: ~/Library/Application Support/Claude/claude_desktop_config.json) and add:

Option A: using ENV_FILE

{
  "mcpServers": {
    "gpt5-mcp": {
      "command": "/opt/homebrew/bin/node",
      "args": ["/absolute/path/to/gpt5-mcp-server/dist/cli.js"],
      "env": {
        "ENV_FILE": "/absolute/path/to/gpt5-mcp-server/.env"
      }
    }
  }
}

Option B: explicit env vars

{
  "mcpServers": {
    "gpt5-mcp": {
      "command": "/opt/homebrew/bin/node",
      "args": ["/absolute/path/to/gpt5-mcp-server/dist/cli.js"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        "OPENAI_MODEL": "gpt-5",
        "OPENAI_TIMEOUT_MS": "120000",
        "DEFAULT_VERBOSITY": "medium",
        "REASONING_EFFORT": "low",
        "WEB_SEARCH_DEFAULT_ENABLED": "false",
        "WEB_SEARCH_CONTEXT_SIZE": "medium"
      }
    }
  }
}
  1. CLI usage
  • Package exposes bin(s).
    • Local link: npm link → run gpt5-mcp-server
    • Global (after publish): npm i -g gpt5-mcp-servergpt5-mcp-server
    • Direct: node /absolute/path/to/gpt5-mcp-server/dist/cli.js
  1. Web Search notes
  • Due to OpenAI constraints, web_search_preview cannot be combined with reasoning.effort = minimal.
  • This server automatically bumps effort to medium if web_search.enabled = true.
  • If you need strict minimal, set web_search.enabled = false.
  1. Troubleshooting
  • JSON parse error (Unexpected token ...)
    • Likely extra logs on stdio. Use node dist/cli.js, avoid npx.
  • Auth error
    • Ensure OPENAI_API_KEY is provided.
  • Timeout
    • Increase OPENAI_TIMEOUT_MS (e.g., 120000).
  • 400 with Web Search
    • Caused by minimal effort + web search. It's auto-bumped to medium; alternatively set reasoning_effort=medium or disable web_search.

Tool: gpt5_query

Input schema (JSON):

{
  "query": "string",
  "model": "string?",
  "system": "string?",
  "reasoning_effort": "low|minimal|medium|high?",
  "verbosity": "low|medium|high?",
  "tool_choice": "auto|none?",
  "parallel_tool_calls": "boolean?",
  "max_output_tokens": "number?",
  "web_search": {
    "enabled": "boolean?",
    "search_context_size": "low|medium|high?"
  }
}

Example call (Inspector or client):

{
  "method": "tools/call",
  "params": {
    "name": "gpt5_query",
    "arguments": {
      "query": "Summarize the latest on X.",
      "verbosity": "low",
      "web_search": { "enabled": true, "search_context_size": "medium" }
    }
  }
}

Defaults and behavior

  • model: defaults to OPENAI_MODEL (env). Example: gpt-5.
  • system: optional. Sent as instructions.
  • reasoning_effort: accepts low|minimal|medium|high. Internally lowminimal
    • Constraint: when web_search.enabled=true and effort is minimal, it is auto-bumped to medium to satisfy OpenAI constraints.
  • verbosity: defaults to DEFAULT_VERBOSITY (env). Sent as text.verbosity.
  • tool_choice: default auto.
  • parallel_tool_calls: default true.
  • max_output_tokens: optional; omitted when not set.
  • web_search.enabled: defaults to WEB_SEARCH_DEFAULT_ENABLED (env).
  • web_search.search_context_size: defaults to WEB_SEARCH_CONTEXT_SIZE (env). Allowed: low|medium|high.

Environment variable mapping

  • OPENAI_API_KEY (required)
  • OPENAI_MODEL → model default
  • OPENAI_MAX_RETRIES → OpenAI client
  • OPENAI_TIMEOUT_MS → OpenAI client
  • REASONING_EFFORT → reasoning_effort default (low|minimal|medium|high)
  • DEFAULT_VERBOSITY → verbosity default (low|medium|high)
  • WEB_SEARCH_DEFAULT_ENABLED → web_search.enabled default (true|false)
  • WEB_SEARCH_CONTEXT_SIZE → web_search.search_context_size default (low|medium|high)

Output shape

  • On success: content: [{ type: "text", text: string }]
  • On error: isError: true and a text item with Error: ...

Notes

  • If the selected model does not support certain fields (e.g., verbosity), they are ignored.
  • Keep API keys out of logs. Ensure .env is not committed.

License

MIT

日本語 (Japanese)

<a id="ja"></a>

ツール: gpt5_query

入力スキーマ (JSON):

{
  "query": "string",
  "model": "string?",
  "system": "string?",
  "reasoning_effort": "low|minimal|medium|high?",
  "verbosity": "low|medium|high?",
  "tool_choice": "auto|none?",
  "parallel_tool_calls": "boolean?",
  "max_output_tokens": "number?",
  "web_search": {
    "enabled": "boolean?",
    "search_context_size": "low|medium|high?"
  }
}

例 (Inspector など):

{
  "method": "tools/call",
  "params": {
    "name": "gpt5_query",
    "arguments": {
      "query": "Summarize the latest on X.",
      "verbosity": "low",
      "web_search": { "enabled": true, "search_context_size": "medium" }
    }
  }
}

既定値と挙動

  • model: 既定は OPENAI_MODEL(環境変数)。例: gpt-5
  • system: 任意。OpenAI には instructions として送信します。
  • reasoning_effort: low|minimal|medium|high を受け付け、内部的に lowminimal として扱われます。
    • 制約: web_search.enabled=true かつ effort=minimal の場合、OpenAI の制約に合わせて自動的に medium に引き上げます。
  • verbosity: 既定は DEFAULT_VERBOSITY(環境変数)。OpenAI には text.verbosity として送信します。
  • tool_choice: 既定は auto
  • parallel_tool_calls: 既定は true
  • max_output_tokens: 任意。未指定の場合は送信しません。
  • web_search.enabled: 既定は WEB_SEARCH_DEFAULT_ENABLED(環境変数)。
  • web_search.search_context_size: 既定は WEB_SEARCH_CONTEXT_SIZE(環境変数)。許容値: low|medium|high

環境変数マッピング

  • OPENAI_API_KEY(必須)
  • OPENAI_MODEL → model 既定
  • OPENAI_MAX_RETRIES → OpenAI クライアント設定
  • OPENAI_TIMEOUT_MS → OpenAI クライアント設定
  • REASONING_EFFORT → reasoning_effort 既定(low|minimal|medium|high
  • DEFAULT_VERBOSITY → verbosity 既定(low|medium|high
  • WEB_SEARCH_DEFAULT_ENABLED → web_search.enabled 既定(true|false
  • WEB_SEARCH_CONTEXT_SIZE → web_search.search_context_size 既定(low|medium|high

出力形式

  • 成功時: content: [{ type: "text", text: string }]
  • エラー時: isError: truetextError: ...

注意

  • 選択したモデルが特定のフィールド(例: verbosity)をサポートしない場合、それらは無視されます。
  • API キーはログに出力しません。.env はコミットしないでください。

MCP Serverの使い方

このサーバーは Model Context Protocol (MCP) の標準入出力(stdio)で動作します。純粋な JSON のみを stdout に出力する設計のため、MCP Inspector / Claude Code / Claude Desktop で安全に接続できます。

前提

  • Node.js 18+
  • OpenAI APIキーが .env もしくは環境変数で設定されていること
  1. ビルド
pnpm run build
  1. 直接起動(推奨)
  • コマンド: node
  • 引数: dist/cli.js
  • CWD: リポジトリのルート(.env を読む場合は必須)

例:

node dist/cli.js
  1. Claude Code(VS Code 拡張)に追加
  • VS Code のコマンドパレット → 「Claude: Manage MCP Servers」
  • 「Add server」で次を入力:
    • Name: gpt5-mcp
    • Command: node(絶対パス可)
    • Args: ["/絶対/パス/gpt5-mcp-server/dist/cli.js"](グローバル導入済みなら不要)
    • Env(どちらか一方):
      • オプションA(ENV_FILE): ENV_FILE=/絶対/パス/gpt5-mcp-server/.env
      • オプションB(明示指定): OPENAI_API_KEYOPENAI_MODELOPENAI_TIMEOUT_MSDEFAULT_VERBOSITYREASONING_EFFORTWEB_SEARCH_DEFAULT_ENABLEDWEB_SEARCH_CONTEXT_SIZE
  1. Claude Desktop に追加 設定ファイル(例: macOS は ~/Library/Application Support/Claude/claude_desktop_config.json)を編集して以下を追記します。

オプションA: ENV_FILE を使う

{
  "mcpServers": {
    "gpt5-mcp": {
      "command": "/opt/homebrew/bin/node",
      "args": ["/絶対/パス/gpt5-mcp-server/dist/cli.js"],
      "env": {
        "ENV_FILE": "/絶対/パス/gpt5-mcp-server/.env"
      }
    }
  }
}

オプションB: 環境変数を明示指定

{
  "mcpServers": {
    "gpt5-mcp": {
      "command": "/opt/homebrew/bin/node",
      "args": ["/絶対/パス/gpt5-mcp-server/dist/cli.js"],
      "env": {
        "OPENAI_API_KEY": "sk-...",
        "OPENAI_MODEL": "gpt-5",
        "OPENAI_TIMEOUT_MS": "120000",
        "DEFAULT_VERBOSITY": "medium",
        "REASONING_EFFORT": "low",
        "WEB_SEARCH_DEFAULT_ENABLED": "false",
        "WEB_SEARCH_CONTEXT_SIZE": "medium"
      }
    }
  }
}
  1. CLI の利用
  • パッケージには bin が含まれます。
    • ローカルリンク: npm link 後に gpt5-mcp-server
    • グローバル(公開後): npm i -g gpt5-mcp-servergpt5-mcp-server
    • 直接実行: node /絶対/パス/gpt5-mcp-server/dist/cli.js
  1. Web Search に関する注意
  • OpenAI の制約により、web_search_previewreasoning.effort = minimal と併用できません。
  • 本サーバーは web_search.enabled = true の場合、自動的に effort を medium に引き上げて呼び出します。
  • もし minimal を厳格に使いたい場合は、web_search.enabled = false にしてください。
  1. トラブルシューティング
  • JSON パースエラー(Unexpected token ...)
    • stdio に余計な出力が混ざっている可能性があります。node dist/cli.js を使い、npx は避けてください。
    • .env 読み込みやライブラリのログは既に抑止済みです。
  • 認証エラー
    • OPENAI_API_KEY が正しく渡っているか確認。
  • タイムアウト
    • OPENAI_TIMEOUT_MS を増やす(例: 120000)。
  • Web Search で 400 エラー
    • reasoning.effort=minimalweb_search の併用不可が原因。自動的に medium に上げますが、明示的に medium を指定するか、web_search を無効化してください。

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured