
Google Toolbox
Google Toolbox
Tools
create_event
Create a new calendar event
update_event
Update an existing calendar event
list_emails
List recent emails from Gmail inbox
search_emails
Search emails with advanced query
send_email
Send a new email
modify_email
Modify email labels (archive, trash, mark read/unread, etc.)
list_events
List upcoming calendar events
delete_event
Delete a calendar event
search_google
Perform a Google search and return formatted results
read_gdrive_file
Read contents of a file from Google Drive
search_gdrive
Search for files in Google Drive
README
py-mcp-google-toolbox
An MCP server that provides AI assistants with powerful tools to interact with Google services, including Gmail, Google Calendar, Google Drive, and Google Search.
<a href="https://glama.ai/mcp/servers/@jikime/py-mcp-google-toolbox"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@jikime/py-mcp-google-toolbox/badge" alt="Google Toolbox MCP server" /> </a>
Overview
py-mcp-google-toolbox provides the following Google-related functionalities:
- Gmail operations (read, search, send, modify)
- Google Calendar management (events creation, listing, updating, deletion)
- Google Drive interactions (search, read files)
- Google Search integration (search web)
Table of Contents
Prerequisites
- Python: Install Python 3.12 or higher
- Google Cloud Console Setup:
- Go to Google Cloud Console
- Create a new project or select an existing one
- Enable the Service API:
- Go to "APIs & Services" > "Library"
- Search for and enable "Gmail API"
- Search for and enable "Google Calendar API"
- Search for and enable "Google Drive API"
- Search formand enable "Custom Search API"
- Set up OAuth 2.0 credentials from GCP:
- Go to "APIs & Services" > "Credentials"
- Click "Create Credentials" > "OAuth client ID"
- Choose "Web application"
- Note down the Client ID and Client Secret
- Client ID
- Client Secret
- download secret json and rename to credentials.json
- Generate an API key
- Go to Custom Search Engine and get its ID
Installation
Git Clone
git clone https://github.com/jikime/py-mcp-google-toolbox.git
cd py-mcp-google-toolbox
Configuration
- Install UV package manager:
curl -LsSf https://astral.sh/uv/install.sh | sh
- Create and activate virtual environment:
uv venv -p 3.12
source .venv/bin/activate # On MacOS/Linux
# or
.venv\Scripts\activate # On Windows
- Install dependencies:
uv pip install -r requirements.txt
- Get refresh token (if token is expired, you can run this)
uv run get_refresh_token.py
This will:
- Open your browser for Google OAuth authentication
- Request the following permissions:
https://www.googleapis.com/auth/gmail.modify
https://www.googleapis.com/auth/calendar
https://www.googleapis.com/auth/gmail.send
https://www.googleapis.com/auth/gmail.readonly
https://www.googleapis.com/auth/drive
https://www.googleapis.com/auth/drive.file
https://www.googleapis.com/auth/drive.readonly
- Save the credentials to
token.json
- Display the refresh token in the console
- Environment variables:
cp env.example .env
vi .env
# change with your key
GOOGLE_API_KEY=your_google_api_key
GOOGLE_CSE_ID=your_custom_search_engine_id
GOOGLE_CLIENT_ID=your_google_client_id
GOOGLE_CLIENT_SECRET=your_google_client_secret
GOOGLE_REFRESH_TOKEN=your_google_refresh_token
- copy credentials.json to project root folder (py-mcp-google-toolbox)
Using Docker
- Build the Docker image:
docker build -t py-mcp-google-toolbox .
- Run the container:
docker run py-mcp-google-toolbox
Using Local
- Run the server:
mcp dev server.py
Configure MCP Settings
Add the server configuration to your MCP settings file:
Claude desktop app
- To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-google-toolbox --client claude
- To install manually
open
~/Library/Application Support/Claude/claude_desktop_config.json
Add this to the mcpServers
object:
{
"mcpServers": {
"Google Toolbox": {
"command": "/path/to/bin/uv",
"args": [
"--directory",
"/path/to/py-mcp-google-toolbox",
"run",
"server.py"
]
}
}
}
Cursor IDE
open ~/.cursor/mcp.json
Add this to the mcpServers
object:
{
"mcpServers": {
"Google Toolbox": {
"command": "/path/to/bin/uv",
"args": [
"--directory",
"/path/to/py-mcp-google-toolbox",
"run",
"server.py"
]
}
}
}
for Docker
{
"mcpServers": {
"Google Toolbox": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"py-mcp-google-toolbox"
]
}
}
}
Tools Documentation
Gmail Tools
list_emails
: Lists recent emails from Gmail inbox with filtering optionssearch_emails
: Performs advanced Gmail searches with detailed email content retrievalsend_email
: Composes and sends emails with support for CC, BCC recipientsmodify_email
: Changes email states (read/unread, archived, trashed) by modifying labels
Calendar Tools
list_events
: Retrieves upcoming calendar events within specified time rangescreate_event
: Creates new calendar events with attendees, location, and descriptionupdate_event
: Modifies existing calendar events with flexible parameter updatingdelete_event
: Removes calendar events by event ID
Drive Tools
read_gdrive_file
: Reads and retrieves content from Google Drive filessearch_gdrive
: Searches Google Drive for files with customizable queries
Search Tools
search_google
: Performs Google searches and returns formatted results
Development
For local testing, you can use the included client script:
# Example: List emails
uv run client.py list_emails max_results=5 query="is:unread"
# Example: Search emails
uv run client.py search_emails query="from:test@example.com"
# Example: Send email
uv run client.py send_email to="test@example.com" subject="test mail" body="Hello"
# Example: Modify email
uv run client.py modify_email id=MESSAGE_ID remove_labels=INBOX add_labels=ARCHIVED
# Example: List events
uv run client.py list_events time_min=2025-05-01T00:00:00+09:00 time_max=2025-05-02T23:59:59+09:00 max_results=5
# Example: Create event
uv run client.py create_event summary="new event" start=2025-05-02T10:00:00+09:00 end=2025-05-02T11:00:00+09:00 attendees="user1@example.com,user2@example.com"
# Example: Update event
uv run client.py update_event event_id=EVENT_ID summary="update event" start=2025-05-02T10:00:00+09:00 end=2025-05-02T11:00:00+09:00 attendees="user1@example.com,user2@example.com"
# Example Delete event
uv run client.py delete_event event_id=EVENT_ID
# Example: Search Google
uv run client.py search_google query="what is the MCP?"
# Example: Search Google Drive
uv run client.py search_gdrive query=mcp
# Example: Read file
uv run client.py read_gdrive_file file_id=1234567890
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.