Google Toolbox

Google Toolbox

Google Toolbox

Category
Visit Server

Tools

create_event

Create a new calendar event

update_event

Update an existing calendar event

list_emails

List recent emails from Gmail inbox

search_emails

Search emails with advanced query

send_email

Send a new email

modify_email

Modify email labels (archive, trash, mark read/unread, etc.)

list_events

List upcoming calendar events

delete_event

Delete a calendar event

search_google

Perform a Google search and return formatted results

read_gdrive_file

Read contents of a file from Google Drive

search_gdrive

Search for files in Google Drive

README

py-mcp-google-toolbox

smithery badge Version License

An MCP server that provides AI assistants with powerful tools to interact with Google services, including Gmail, Google Calendar, Google Drive, and Google Search.

<a href="https://glama.ai/mcp/servers/@jikime/py-mcp-google-toolbox"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@jikime/py-mcp-google-toolbox/badge" alt="Google Toolbox MCP server" /> </a>

Overview

py-mcp-google-toolbox provides the following Google-related functionalities:

  • Gmail operations (read, search, send, modify)
  • Google Calendar management (events creation, listing, updating, deletion)
  • Google Drive interactions (search, read files)
  • Google Search integration (search web)

Table of Contents

Prerequisites

  1. Python: Install Python 3.12 or higher
  2. Google Cloud Console Setup:
    • Go to Google Cloud Console
    • Create a new project or select an existing one
    • Enable the Service API:
      1. Go to "APIs & Services" > "Library"
      2. Search for and enable "Gmail API"
      3. Search for and enable "Google Calendar API"
      4. Search for and enable "Google Drive API"
      5. Search formand enable "Custom Search API"
    • Set up OAuth 2.0 credentials from GCP:
      1. Go to "APIs & Services" > "Credentials"
      2. Click "Create Credentials" > "OAuth client ID"
      3. Choose "Web application"
      4. Note down the Client ID and Client Secret
        • Client ID
        • Client Secret
      5. download secret json and rename to credentials.json
    • Generate an API key
  3. Go to Custom Search Engine and get its ID

Installation

Git Clone

git clone https://github.com/jikime/py-mcp-google-toolbox.git
cd py-mcp-google-toolbox

Configuration

  1. Install UV package manager:
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create and activate virtual environment:
uv venv -p 3.12
source .venv/bin/activate  # On MacOS/Linux
# or
.venv\Scripts\activate  # On Windows
  1. Install dependencies:
uv pip install -r requirements.txt
  1. Get refresh token (if token is expired, you can run this)
uv run get_refresh_token.py

This will:

  • Open your browser for Google OAuth authentication
  • Request the following permissions:
    • https://www.googleapis.com/auth/gmail.modify
    • https://www.googleapis.com/auth/calendar
    • https://www.googleapis.com/auth/gmail.send
    • https://www.googleapis.com/auth/gmail.readonly
    • https://www.googleapis.com/auth/drive
    • https://www.googleapis.com/auth/drive.file
    • https://www.googleapis.com/auth/drive.readonly
  • Save the credentials to token.json
  • Display the refresh token in the console
  1. Environment variables:
cp env.example .env
vi .env
# change with your key
GOOGLE_API_KEY=your_google_api_key
GOOGLE_CSE_ID=your_custom_search_engine_id
GOOGLE_CLIENT_ID=your_google_client_id
GOOGLE_CLIENT_SECRET=your_google_client_secret
GOOGLE_REFRESH_TOKEN=your_google_refresh_token
  1. copy credentials.json to project root folder (py-mcp-google-toolbox)

Using Docker

  1. Build the Docker image:
docker build -t py-mcp-google-toolbox .
  1. Run the container:
docker run py-mcp-google-toolbox

Using Local

  1. Run the server:
mcp dev server.py

Configure MCP Settings

Add the server configuration to your MCP settings file:

Claude desktop app

  1. To install automatically via Smithery:
npx -y @smithery/cli install @jikime/py-mcp-google-toolbox --client claude
  1. To install manually open ~/Library/Application Support/Claude/claude_desktop_config.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-google-toolbox",
        "run",
        "server.py"
      ]
    }
  }
}

Cursor IDE

open ~/.cursor/mcp.json

Add this to the mcpServers object:

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "/path/to/bin/uv",
      "args": [
        "--directory",
        "/path/to/py-mcp-google-toolbox",
        "run",
        "server.py"
      ]
    }
  }
}

for Docker

{
  "mcpServers": {
    "Google Toolbox": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "py-mcp-google-toolbox"
      ]
    }
  }
}

Tools Documentation

Gmail Tools

  • list_emails: Lists recent emails from Gmail inbox with filtering options
  • search_emails: Performs advanced Gmail searches with detailed email content retrieval
  • send_email: Composes and sends emails with support for CC, BCC recipients
  • modify_email: Changes email states (read/unread, archived, trashed) by modifying labels

Calendar Tools

  • list_events: Retrieves upcoming calendar events within specified time ranges
  • create_event: Creates new calendar events with attendees, location, and description
  • update_event: Modifies existing calendar events with flexible parameter updating
  • delete_event: Removes calendar events by event ID

Drive Tools

  • read_gdrive_file: Reads and retrieves content from Google Drive files
  • search_gdrive: Searches Google Drive for files with customizable queries

Search Tools

  • search_google: Performs Google searches and returns formatted results

Development

For local testing, you can use the included client script:

# Example: List emails
uv run client.py list_emails max_results=5 query="is:unread"

# Example: Search emails
uv run client.py search_emails query="from:test@example.com"

# Example: Send email
uv run client.py send_email to="test@example.com" subject="test mail" body="Hello"

# Example: Modify email
uv run client.py modify_email id=MESSAGE_ID remove_labels=INBOX add_labels=ARCHIVED

# Example: List events
uv run client.py list_events time_min=2025-05-01T00:00:00+09:00 time_max=2025-05-02T23:59:59+09:00 max_results=5

# Example: Create event
uv run client.py create_event summary="new event" start=2025-05-02T10:00:00+09:00 end=2025-05-02T11:00:00+09:00 attendees="user1@example.com,user2@example.com"

# Example: Update event
uv run client.py update_event event_id=EVENT_ID summary="update event" start=2025-05-02T10:00:00+09:00 end=2025-05-02T11:00:00+09:00 attendees="user1@example.com,user2@example.com"

# Example Delete event
uv run client.py delete_event event_id=EVENT_ID

# Example: Search Google
uv run client.py search_google query="what is the MCP?"

# Example: Search Google Drive
uv run client.py search_gdrive query=mcp

# Example: Read file
uv run client.py read_gdrive_file file_id=1234567890

License

MIT License

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured