Google Sheets MCP Server
Provides a secure bridge for AI assistants to interact with the Google Sheets API via 31 tools for spreadsheet management, data manipulation, and table-level operations. It supports both Service Account and OAuth 2.0 authentication for tasks including batch updates, CSV imports, and conditional formatting.
README
Google Sheets MCP Server
A Model Context Protocol (MCP) server that provides a secure bridge between MCP-compatible clients (like Claude Desktop) and the Google Sheets API.
Overview
This MCP server provides a secure interface for AI assistants to interact with Google Spreadsheets, enabling powerful automation and data manipulation workflows. It supports both Service Account and OAuth 2.0 authentication methods and runs as a containerized service for enhanced security.
Key Features
- 31 Tools for comprehensive spreadsheet manipulation
- Service Account & OAuth 2.0 authentication support
- Docker-based deployment with non-root user execution
- Table-level operations for structured data management
- Batch operations for efficient API usage
- Conditional formatting with custom rules and formulas
- CSV import/export capabilities
Architecture
Claude Desktop → MCP Gateway → Google Sheets Server → Google Sheets API
↓
Docker Desktop Secrets
Tools Available
Spreadsheet Management (3 tools)
list_spreadsheets- List spreadsheets from Drive folder or user accesscreate_spreadsheet- Create new spreadsheetshare_spreadsheet- Share with users/emails (reader, commenter, writer roles)
Sheet Operations (6 tools)
list_sheets- List all sheet names in a spreadsheetcreate_sheet- Add new sheet (tab)rename_sheet- Rename existing sheetcopy_sheet- Duplicate sheet within or across spreadsheetsadd_columns- Add columns to sheetadd_conditional_formatting- Add conditional formatting rulesupdate_conditional_formatting- Update or move existing rules
Data Access (4 tools)
get_sheet_data- Read data from range (with optional grid metadata)get_sheet_formulas- Read formulas from rangeget_multiple_sheet_data- Fetch multiple ranges in one callget_multiple_spreadsheet_summary- Get titles, headers, and preview rows
Data Modification (3 tools)
update_cells- Write data to specific range (overwrites)batch_update_cells- Update multiple ranges in one calladd_rows- Append rows to end of sheet
Table Operations (11 tools)
list_tables- List defined tables (named ranges)create_table- Create table with headers and optional dataget_table_data- Read table data with filters, limit, offsetinsert_table_rows- Insert rows into tableupdate_table_rows- Update rows matching criteriadelete_table_rows- Delete rows matching criteriaadd_table_columns- Add columns to tablerename_table_column- Rename table headerexport_table_as_csv- Export table to CSV formatimport_csv_to_table- Import CSV content into table
Prerequisites
- Docker Desktop with MCP Toolkit enabled
- Docker MCP CLI plugin (
docker mcpcommand) - Google Cloud Project with:
- Google Sheets API enabled
- Google Drive API enabled
- Credentials:
- Service Account JSON file (recommended), OR
- OAuth 2.0 credentials for user authentication
Quick Start
1. Build Docker Image
git clone <repository-url>
cd MCP_GoogleSheets
docker build -t googlesheets-mcp-server .
2. Configure Credentials
# Service Account (recommended)
docker mcp secret set GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
docker mcp secret set SERVICE_ACCOUNT_EMAIL="your-sa@project.iam.gserviceaccount.com"
# Optional: Specify default Drive folder
docker mcp secret set DRIVE_FOLDER_ID="your-folder-id"
3. Create Custom Catalog
Create or edit ~/.docker/mcp/catalogs/custom.yaml:
version: 2
name: custom
displayName: Custom MCP Servers
registry:
googlesheets:
description: "Bridge between MCP clients and Google Sheets API"
title: "Google Sheets"
type: server
dateAdded: "2025-10-11T00:00:00Z"
image: googlesheets-mcp-server:latest
ref: ""
tools:
- name: list_spreadsheets
- name: create_spreadsheet
- name: get_sheet_data
# ... (see readme.txt for complete list)
secrets:
- name: GOOGLE_APPLICATION_CREDENTIALS
env: GOOGLE_APPLICATION_CREDENTIALS
- name: SERVICE_ACCOUNT_EMAIL
env: SERVICE_ACCOUNT_EMAIL
- name: DRIVE_FOLDER_ID
env: DRIVE_FOLDER_ID
metadata:
category: productivity
tags: [google, sheets, spreadsheet, data]
4. Update Registry
Edit ~/.docker/mcp/registry.yaml and add:
registry:
googlesheets:
ref: ""
5. Configure Claude Desktop
Edit your Claude Desktop config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Add the custom catalog to the args array:
{
"mcpServers": {
"mcp-toolkit-gateway": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-v", "/var/run/docker.sock:/var/run/docker.sock",
"-v", "/Users/your_username/.docker/mcp:/mcp",
"docker/mcp-gateway",
"--catalog=/mcp/catalogs/docker-mcp.yaml",
"--catalog=/mcp/catalogs/custom.yaml",
"--config=/mcp/config.yaml",
"--registry=/mcp/registry.yaml",
"--tools-config=/mcp/tools.yaml",
"--transport=stdio"
]
}
}
}
6. Restart Claude Desktop
Quit and restart Claude Desktop completely. Your Google Sheets tools should now be available!
Usage Examples
Basic Operations
"List all my spreadsheets"
"Create a new spreadsheet called 'Q1 Sales Data 2025'"
"Get data from Sheet1 range A1:D10 in spreadsheet [ID]"
"Add a new sheet called 'Revenue' to my spreadsheet"
Table Operations
"Create a table with headers ['Name', 'Email', 'Status'] in Sheet1"
"Get all data from the 'Customers' table where Status is 'Active'"
"Insert rows [['John', 'john@example.com', 'Active']] into the Users table"
"Export the 'Sales' table as CSV"
Advanced Features
"Share my spreadsheet with user@example.com as a writer"
"Add conditional formatting to highlight values > 100 in A1:D10"
"Update cells A1:B2 with data [[1,2],[3,4]]"
"Batch update multiple ranges: A1:B2 and D5:E6"
Data Format Examples
2D Array (for update_cells, add_rows)
[["Header1", "Header2"], ["Value1", "Value2"]]
Multiple Ranges (for batch_update_cells)
{"A1:B2": [[1, 2], [3, 4]], "D5": [["Hello"]]}
Filters (for get_table_data)
{"Status": "Active", "Country": "USA"}
Conditional Formatting Rule
{
"type": "boolean",
"condition": {
"type": "NUMBER_GREATER",
"values": [{"userEnteredValue": "100"}]
},
"format": {
"backgroundColor": {"red": 1.0, "green": 0.8, "blue": 0.8},
"textFormat": {"bold": true}
}
}
Development
Local Testing
# Set environment variables
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
# Run server
python googlesheets_server.py
# Test MCP protocol
echo '{"jsonrpc":"2.0","method":"tools/list","id":1}' | python googlesheets_server.py
Adding New Tools
- Add function to
googlesheets_server.py - Decorate with
@mcp.tool() - Use single-line docstring only
- Use empty string defaults (
param: str = "") - Always return strings
- Update catalog with new tool name
- Rebuild Docker image
Implementation Rules
See CLAUDE.md for detailed guidelines:
- NO multi-line docstrings (causes gateway panic)
- NO type hints from typing module
- NO
Nonedefaults (use""instead) - Single-line docstrings ONLY
- Always return strings from tools
Troubleshooting
Tools Not Appearing
# Check Docker image
docker images | grep googlesheets
# Verify server in list
docker mcp server list
# Check logs
docker logs [container_name]
Authentication Errors
# Verify secrets
docker mcp secret list
# Check APIs enabled in Google Cloud Console:
# - Google Sheets API
# - Google Drive API
Common Issues
- Gateway panic: Check for multi-line docstrings in tools
- JSON parse errors: Ensure valid JSON with double quotes
- Empty results: Verify spreadsheet ID, sheet name, and range notation
Security
- Credentials stored in Docker Desktop secrets (never hardcoded)
- Server runs as non-root user (
mcpuser) - Sensitive data never logged
- Only operates on authorized spreadsheets
API Limits
Google Sheets API quotas:
- 500 requests per 100 seconds per project
- 100 requests per 100 seconds per user
Consider implementing request batching and caching for production use.
Files
googlesheets_server.py- Main MCP server implementationDockerfile- Container definitionrequirements.txt- Python dependenciesreadme.txt- Detailed installation guideCLAUDE.md- Development guidelines for Claude Codemcp-builder-prompt.md- Template prompt used to build this server
References
License
MIT License
Support
For issues and questions:
- Check the Troubleshooting section
- Review
readme.txtfor detailed setup instructions - See
CLAUDE.mdfor implementation guidelines - Check Docker logs:
docker logs [container_name]
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.