
Google Search MCP Server
A Model Context Protocol server that provides web and image search capabilities through Google's Custom Search API, allowing AI assistants like Claude to access current information from the internet.
README
Google Search MCP Server
A Model Context Protocol (MCP) server that provides web and image search capabilities through Google's Custom Search API. This server follows the MCP specification to integrate with Claude and other AI assistants.
What We're Building
Many AI assistants don't have up-to-date information or the ability to search the web. This MCP server solves that problem by providing two tools:
google_web_search
: Search the web for current informationgoogle_image_search
: Find images related to queries
Once connected to an MCP-compatible client (like Claude in Cursor, VSCode, or Claude Desktop), your AI assistant can perform searches and access current information.
Core MCP Concepts
MCP servers provide capabilities to AI assistants. This server implements:
- Tools: Functions that can be called by the AI (with user approval)
- Structured Communication: Standardized messaging format via the MCP protocol
- Transport Layer: Communication via standard input/output
Prerequisites
- Node.js (v18 or higher) and npm
- Google Cloud Platform account
- Google Custom Search API key and Search Engine ID
- An MCP-compatible client (Claude for Desktop, Cursor, VSCode with Claude, etc.)
Quick Start (Clone this Repository)
If you want to use this server without building it from scratch, follow these steps:
# Clone the repository
git clone https://github.com/yourusername/google-search-mcp-server.git
cd google-search-mcp-server
# Install dependencies
npm install
# Set up your environment variables
# Setup .env file in the root folder of the project
# On macOS/Linux
touch .env
# On Windows
new-item .env
# Edit .env file to add your Google API credentials
# Use any text editor you prefer (VS Code, Notepad, nano, vim, etc.)
# Add these to your newly created .env
GOOGLE_API_KEY=your_api_key_here
GOOGLE_CSE_ID=your_search_engine_id_here
# Build the server
npm run build
# Test the server (optional)
# On macOS/Linux
echo '{"jsonrpc":"2.0","method":"listTools","id":1}' | node dist/index.js
# On Windows PowerShell
echo '{"jsonrpc":"2.0","method":"listTools","id":1}' | node dist/index.js
# On Windows CMD
echo {"jsonrpc":"2.0","method":"listTools","id":1} | node dist/index.js
After building, follow the Connecting to MCP Clients section to connect the server to your preferred client.
Set Up Your Environment (Build from Scratch)
If you prefer to build the server yourself from scratch, follow these instructions:
Create Project Structure
macOS/Linux
# Create a new directory for our project
mkdir google-search-mcp
cd google-search-mcp
# Initialize a new npm project
npm init -y
# Install dependencies
npm install @modelcontextprotocol/sdk dotenv zod
npm install -D @types/node typescript
# Create our files
mkdir src
touch src/index.ts
Windows
# Create a new directory for our project
md google-search-mcp
cd google-search-mcp
# Initialize a new npm project
npm init -y
# Install dependencies
npm install @modelcontextprotocol/sdk dotenv zod
npm install -D @types/node typescript
# Create our files
md src
new-item src\index.ts
Configure TypeScript
Create a tsconfig.json
in the root directory:
{
"compilerOptions": {
"target": "ES2022",
"module": "Node16",
"moduleResolution": "Node16",
"outDir": "./dist",
"rootDir": "./src",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true
},
"include": ["src/**/*"],
"exclude": ["node_modules"]
}
Update package.json
Ensure your package.json
includes:
{
"name": "google_search_mcp",
"version": "0.1.0",
"description": "MCP server for Google Custom Search API integration",
"license": "MIT",
"type": "module",
"bin": {
"google_search": "./dist/index.js"
},
"files": [
"dist"
],
"scripts": {
"build": "tsc",
"build:unix": "tsc && chmod 755 dist/index.js",
"prepare": "npm run build",
"watch": "tsc --watch",
"start": "node dist/index.js"
}
}
Google API Setup
You'll need to set up Google Cloud Platform and get API credentials:
Google Cloud Platform Setup
- Go to Google Cloud Console
- Create a new project
- Enable the Custom Search API:
Navigate to "APIs & Services" → "Library" Search for "Custom Search API" Click on "Custom Search API" → "Enable"
- Create API credentials:
Navigate to "APIs & Services" → "Credentials" Click "Create Credentials" → "API key" Copy your API key
Custom Search Engine Setup
- Go to Programmable Search Engine
- Click "Add" to create a new search engine
- Select "Search the entire web" and name your search engine
- Get your Search Engine ID (cx value) from the Control Panel
Environment Configuration
Create a .env
file in the root directory:
GOOGLE_API_KEY=your_api_key_here
GOOGLE_CSE_ID=your_search_engine_id_here
Add .env
to your .gitignore
file to protect your credentials:
echo ".env" >> .gitignore
Building Your Server
Create the Server Implementation
Create your server implementation in src/index.ts
:
import dotenv from "dotenv"
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import {
CallToolRequestSchema,
ListToolsRequestSchema,
Tool,
} from "@modelcontextprotocol/sdk/types.js";
dotenv.config();
// Define your tools
const WEB_SEARCH_TOOL: Tool = {
name: "google_web_search",
description: "Performs a web search using Google's Custom Search API...",
inputSchema: {
// Schema details here
},
};
const IMAGE_SEARCH_TOOL: Tool = {
name: "google_image_search",
description: "Searches for images using Google's Custom Search API...",
inputSchema: {
// Schema details here
}
};
// Server implementation
const server = new Server(
{
name: "google-search",
version: "0.1.0",
},
{
capabilities: {
tools: {},
},
},
);
// Check for API key and Search Engine ID
const GOOGLE_API_KEY = process.env.GOOGLE_API_KEY!;
const GOOGLE_CSE_ID = process.env.GOOGLE_CSE_ID!;
if (!GOOGLE_API_KEY || !GOOGLE_CSE_ID) {
console.error("Error: Missing environment variables");
process.exit(1);
}
// Tool handlers
server.setRequestHandler(ListToolsRequestSchema, async () => ({
tools: [WEB_SEARCH_TOOL, IMAGE_SEARCH_TOOL],
}));
server.setRequestHandler(CallToolRequestSchema, async (request) => {
// Implement tool handlers
});
// Run the server
async function runServer() {
const transport = new StdioServerTransport();
await server.connect(transport);
console.error("Google Search MCP Server running on stdio");
}
runServer().catch((error) => {
console.error("Fatal error running server:", error);
process.exit(1);
});
For the complete implementation details, see the repository files.
Building the Server
After completing your implementation, build the server:
npm run build
This will compile the TypeScript code to JavaScript in the dist
directory.
Connecting to MCP Clients
MCP servers can be connected to various clients. Here are setup instructions for popular ones:
Claude for Desktop
macOS/Linux
- Open your configuration file:
code ~/Library/Application\ Support/Claude/claude_desktop_config.json
- Add the server configuration:
{
"mcpServers": {
"google_search": {
"command": "node",
"args": [
"/absolute/path/to/google-search-mcp/dist/index.js"
],
"env": {
"GOOGLE_API_KEY": "your_api_key_here",
"GOOGLE_CSE_ID": "your_search_engine_id_here"
}
}
}
}
Windows
- Open your configuration file:
code $env:AppData\Claude\claude_desktop_config.json
- Add the server configuration:
{
"mcpServers": {
"google_search": {
"command": "node",
"args": [
"C:\\absolute\\path\\to\\google-search-mcp\\dist\\index.js"
],
"env": {
"GOOGLE_API_KEY": "your_api_key_here",
"GOOGLE_CSE_ID": "your_search_engine_id_here"
}
}
}
}
- Restart Claude for Desktop
- Verify the tools appear by clicking the tool icon in the interface
VSCode with Claude
macOS/Linux & Windows
- Install the MCP Extension for VSCode
- Create or edit
.vscode/settings.json
in your workspace:
For macOS/Linux:
{
"mcp.servers": {
"google_search": {
"command": "node",
"args": [
"/absolute/path/to/google-search-mcp/dist/index.js"
],
"env": {
"GOOGLE_API_KEY": "your_api_key_here",
"GOOGLE_CSE_ID": "your_search_engine_id_here"
}
}
}
}
For Windows:
{
"mcp.servers": {
"google_search": {
"command": "node",
"args": [
"C:\\absolute\\path\\to\\google-search-mcp\\dist\\index.js"
],
"env": {
"GOOGLE_API_KEY": "your_api_key_here",
"GOOGLE_CSE_ID": "your_search_engine_id_here"
}
}
}
}
- Restart VSCode
- The tools will be available to Claude in VSCode
Cursor
- Open Cursor settings (gear icon)
- Search for "MCP" and open MCP settings
- Click "Add new MCP server"
- Configure with similar settings to above:
For macOS/Linux:
{
"mcpServers": {
"google_search": {
"command": "node",
"args": [
"/absolute/path/to/google-search-mcp/dist/index.js"
],
"env": {
"GOOGLE_API_KEY": "your_api_key_here",
"GOOGLE_CSE_ID": "your_search_engine_id_here"
}
}
}
}
For Windows:
{
"mcpServers": {
"google_search": {
"command": "node",
"args": [
"C:\\absolute\\path\\to\\google-search-mcp\\dist\\index.js"
],
"env": {
"GOOGLE_API_KEY": "your_api_key_here",
"GOOGLE_CSE_ID": "your_search_engine_id_here"
}
}
}
}
- Restart Cursor
Testing Your Server
Using with Claude
Once connected, you can test the tools by asking Claude questions like:
- "Search for the latest news about renewable energy"
- "Find images of electric vehicles"
- "What are the top tourist destinations in Japan?"
Claude will automatically use the appropriate search tool when needed.
Manual Testing
You can also test your server directly:
# Test web search
echo '{
"jsonrpc": "2.0",
"method": "callTool",
"params": {
"name": "google_web_search",
"arguments": {
"query": "test query",
"count": 2
}
},
"id": 1
}' | node dist/index.js
What's Happening Under the Hood
When you ask a question:
- The client sends your question to Claude
- Claude analyzes the available tools and decides which to use
- The client executes the chosen tool through your MCP server
- The results are sent back to Claude
- Claude formulates a natural language response based on the search results
- The response is displayed to you
Troubleshooting
Common Issues
Environment Variables
If you see Error: GOOGLE_API_KEY environment variable is required
:
# Check your .env file
cat .env
# Try setting environment variables directly:
export GOOGLE_API_KEY=your_key_here
export GOOGLE_CSE_ID=your_id_here
API Errors
If you encounter API errors:
# Test your API credentials directly
curl "https://www.googleapis.com/customsearch/v1?key=YOUR_API_KEY&cx=YOUR_CX_ID&q=test"
Connection Issues
If your client can't connect to the server:
# Verify the server runs correctly on its own
node dist/index.js
# Check file permissions
chmod 755 dist/index.js
# Ensure you're using absolute paths in your configuration
API Reference
google_web_search
Performs a web search using Google's Custom Search API.
Parameters:
query
(string, required): The search querycount
(number, optional): Number of results (1-10, default 5)start
(number, optional): Pagination start index (default 1)site
(string, optional): Limit search to specific site (e.g., 'example.com')
google_image_search
Searches for images using Google's Custom Search API.
Parameters:
query
(string, required): The image search querycount
(number, optional): Number of results (1-10, default 5)start
(number, optional): Pagination start index (default 1)
Limitations
- Free tier of Google Custom Search API: 100 queries per day
- Server-enforced rate limit: 5 requests per second
- Maximum 10 results per query (Google API limitation)
License
This project is licensed under the MIT License - see the LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.