Google Calendar MCP Server

Google Calendar MCP Server

Provides AI assistants with intelligent access to Google Calendar data, enabling natural language queries about availability, upcoming events, schedule conflicts, and meeting summaries through context-aware calendar integration.

Category
Visit Server

README

Project Management MCP Server

A Model Context Protocol (MCP) server that acts as a context-aware middleware for AI assistants. It intercepts user queries, analyzes intent, fetches context from multiple productivity systems (Google Calendar, GitHub, Slack, and JIRA), assembles a structured context package, and delivers it alongside the original prompt to the Gemini AI model for hyper-relevant responses.

This repository (together with a Devpost demo video) forms the submission for the Build-Your-Own-MCP Challenge.


Table of Contents

  1. High-Level Workflow
  2. Key Capabilities
  3. Architecture
  4. Integrations & Required Credentials
  5. Installation & Setup
  6. Running the Server & UI
  7. Available MCP Tools
  8. Submission Checklist
  9. Project Structure
  10. Troubleshooting
  11. License & Contact

High-Level Workflow

  1. Intercept user queries (via MCP client, CLI, or Streamlit dashboard).
  2. Analyze intent with an NLP-powered QueryAnalyzer (intent detection, entity extraction, domain classification, temporal parsing).
  3. Fetch supplemental context from the relevant data sources.
  4. Assemble a ranked & summarized context package using caching, ranking, summarization, and correlation engines.
  5. Deliver the context bundle and original prompt to Gemini for the final response.

Key Capabilities

Intelligent Query Understanding

  • Detects calendar, GitHub, Slack, and JIRA domains (or multi-domain queries).
  • Extracts entities such as repositories, PR/issue counts, calendar dates, backlog keywords, etc.
  • Supports relative and absolute time references via a time-aware analyzer.

Multi-Source Context Gathering

  • Google Calendar: Events, availability, conflicts, and multi-calendar aggregation.
  • GitHub: Repositories, issues, PRs, commits, deployments, README summaries.
  • Slack: Channels, mentions, unread messages, recent activity.
  • JIRA: Boards, assigned issues, backlog items, sprint insights.

Context Packaging

  • ContextCache: TTL-based cache to minimize redundant API calls.
  • ContextRanker: Prioritizes the most relevant events/issues per query.
  • ContextSummarizer: Compresses context to stay within token budgets.
  • ContextCorrelator: Cross-links signals across services (e.g., meetings vs. deployments vs. Slack alerts).

Delivery via Gemini

  • Aggregated context + user prompt → Gemini (primarily gemini-2.5-flash) to craft a tailored response.

Architecture

┌──────────────────────────┐
│      User Request        │
└────────────┬─────────────┘
             │
             ▼
┌──────────────────────────┐
│     Query Analyzer       │  ← intent detection, entities, time range
└────────────┬─────────────┘
             │
  ┌──────────┼───────────┐
  │          │           │
  ▼          ▼           ▼
Calendar   GitHub      Slack      JIRA
Client     Client      Client     Client
(fetch)    (fetch)     (fetch)    (fetch)
  │          │           │         │
  └──────────┴───────────┴─────────┘
             │
             ▼
┌──────────────────────────┐
│ Cache / Rank / Summarize │
└────────────┬─────────────┘
             │
             ▼
┌──────────────────────────┐
│ Gemini Client (Chat)     │ → context + prompt → AI answer
└──────────────────────────┘

Integrations & Required Credentials

Service Credentials / Env Vars Notes
Google Calendar config/credentials.json, config/token.json (generated) OAuth desktop credentials with Calendar scopes
GitHub .envGITHUB_TOKEN Personal Access Token with repo scope
Slack .envSLACK_USER_TOKEN User token with channels:read, channels:history, groups:*, im:*, search:read, users:read
JIRA .envJIRA_BASE_URL, JIRA_EMAIL, JIRA_API_TOKEN Jira Cloud site, email, and API token
Gemini .envGEMINI_API_KEY Google AI Studio API key

Optional environment variables (with defaults in code):

  • GOOGLE_CREDENTIALS_PATH (default config/credentials.json)
  • GOOGLE_TOKEN_PATH (default config/token.json)
  • CALENDAR_TIMEZONE (used for time parsing defaults)

Make sure sensitive files (credentials and tokens) stay out of version control. .gitignore already excludes them.


Installation & Setup

  1. Clone the repository

    git clone <repo-url>
    cd MCP\ server
    
  2. Create & activate a Python environment

    python3 -m venv .venv
    source .venv/bin/activate            # Windows: .venv\Scripts\activate
    
  3. Install dependencies

    pip install -r requirements.txt
    
  4. Provide credentials

    • Place Google OAuth desktop credentials at config/credentials.json.
    • Create a .env file (copy .env.example) and populate the tokens/keys listed above.
  5. Authenticate Google Calendar (first run) Running the server for the first time will launch a browser window for Google OAuth and produce config/token.json.


Running the Server & UI

1. MCP Server (JSON-RPC over stdio)

python main.py

This registers tools such as chat, get_calendar_context, get_github_repositories, get_slack_mentions, get_jira_backlog, etc.

2. Streamlit Dashboard (optional UI)

streamlit run streamlit_app.py

Features predefined queries, quick actions, and a custom prompt box for Calendar/GitHub/Slack/JIRA.

3. CLI Test Scripts (optional)

  • interactive_client.py for command-line chat testing.
  • slack_test.py, jira_test.py for quick credential and API verification.

Available MCP Tools

Tool Description
chat Main conversational endpoint; auto-fetches relevant context across all services.
Calendar
get_calendar_context Analyze a query and return formatted calendar context.
check_availability Check availability for a specific timeslot.
get_upcoming_events List upcoming events.
detect_conflicts Identify conflicts on a date.
GitHub
get_github_repositories List repositories (with metadata).
get_github_issues Fetch open issues.
get_github_pull_requests Fetch PRs.
get_github_deployments Retrieve deployments + status.
Slack
get_slack_channels List channels.
get_slack_unread Channels with unread messages.
get_slack_mentions Recent mentions.
JIRA
get_jira_boards List boards.
get_jira_issues General issue retrieval (board/JQL).
get_my_jira_issues Issues assigned to the authenticated user (with fallbacks).
get_jira_backlog Backlog items (Agile API + JQL fallback).

Each tool returns a formatted string suitable for direct inclusion in a context package.


Submission Checklist

GitHub Repository – contains the full MCP server implementation, connectors, UI, and test scripts.

Context-Aware Workflow – intercept → analyze → fetch → assemble → deliver implemented across four services.

⚠️ Devpost Video Demo – still needed. Please record a short walkthrough showing:

  • How a query flows through the system (e.g., via Streamlit UI).
  • The resulting context assembly (logs/UI snippets).
  • The Gemini-powered responses.
  • Any unique 2.0 features (caching, correlation, summarization). Upload the video to Devpost along with the repo link.

Project Structure

MCP server/
├── main.py                     # Entry point for MCP server
├── streamlit_app.py            # Optional Streamlit UI
├── interactive_client.py       # Simple CLI client
├── slack_test.py / jira_test.py# Quick integration smoke tests
├── src/
│   ├── server.py               # MCP tools & orchestration layer
│   ├── query_analyzer.py       # NLP intent/time/entity detection
│   ├── context_cache.py        # TTL cache for API responses
│   ├── context_ranker.py       # Relevance scoring
│   ├── context_summarizer.py   # Compression + summarization utilities
│   ├── context_correlator.py   # Multi-source correlation engine
│   ├── context_formatter.py    # Human-friendly context formatting
│   ├── gemini_client.py        # Gemini chat integration
│   ├── calendar_client.py      # Google Calendar wrapper
│   ├── github_client.py        # GitHub REST wrapper
│   ├── slack_client.py         # Slack WebClient wrapper
│   ├── jira_client.py          # Jira REST (Agile + Core) wrapper
│   └── connectors/             # Connector facades per service
├── config/
│   ├── credentials.json        # Google OAuth client (excluded from git)
│   └── token.json              # Google OAuth token (excluded from git)
├── requirements.txt
├── .env.example
└── README.md (this file)

Troubleshooting

Issue Resolution
Google Calendar auth loop Delete config/token.json and rerun to reauthenticate. Ensure OAuth consent screen has you as a test user.
GitHub 401 Regenerate GITHUB_TOKEN (classic PAT) with repo scope.
Slack missing_scope Add required scopes under User Token Scopes and reinstall the app.
JIRA 410 errors Confirm you have access to the Jira Cloud site and use valid API tokens. The client already falls back to board-based queries when search fails.
Gemini errors Verify GEMINI_API_KEY is correct and the selected model is available in your region/account.

Logging is configured to stderr to avoid interfering with MCP stdio responses.


License & Contact

Created for the Build-Your-Own-MCP Challenge.

For questions, open an issue or reach out via the Devpost discussion board when submitting your demo.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured