Google Calendar MCP Server
Provides AI assistants with intelligent access to Google Calendar data, enabling natural language queries about availability, upcoming events, schedule conflicts, and meeting summaries through context-aware calendar integration.
README
Project Management MCP Server
A Model Context Protocol (MCP) server that acts as a context-aware middleware for AI assistants. It intercepts user queries, analyzes intent, fetches context from multiple productivity systems (Google Calendar, GitHub, Slack, and JIRA), assembles a structured context package, and delivers it alongside the original prompt to the Gemini AI model for hyper-relevant responses.
This repository (together with a Devpost demo video) forms the submission for the Build-Your-Own-MCP Challenge.
Table of Contents
- High-Level Workflow
- Key Capabilities
- Architecture
- Integrations & Required Credentials
- Installation & Setup
- Running the Server & UI
- Available MCP Tools
- Submission Checklist
- Project Structure
- Troubleshooting
- License & Contact
High-Level Workflow
- Intercept user queries (via MCP client, CLI, or Streamlit dashboard).
- Analyze intent with an NLP-powered
QueryAnalyzer(intent detection, entity extraction, domain classification, temporal parsing). - Fetch supplemental context from the relevant data sources.
- Assemble a ranked & summarized context package using caching, ranking, summarization, and correlation engines.
- Deliver the context bundle and original prompt to Gemini for the final response.
Key Capabilities
Intelligent Query Understanding
- Detects calendar, GitHub, Slack, and JIRA domains (or multi-domain queries).
- Extracts entities such as repositories, PR/issue counts, calendar dates, backlog keywords, etc.
- Supports relative and absolute time references via a time-aware analyzer.
Multi-Source Context Gathering
- Google Calendar: Events, availability, conflicts, and multi-calendar aggregation.
- GitHub: Repositories, issues, PRs, commits, deployments, README summaries.
- Slack: Channels, mentions, unread messages, recent activity.
- JIRA: Boards, assigned issues, backlog items, sprint insights.
Context Packaging
- ContextCache: TTL-based cache to minimize redundant API calls.
- ContextRanker: Prioritizes the most relevant events/issues per query.
- ContextSummarizer: Compresses context to stay within token budgets.
- ContextCorrelator: Cross-links signals across services (e.g., meetings vs. deployments vs. Slack alerts).
Delivery via Gemini
- Aggregated context + user prompt → Gemini (primarily
gemini-2.5-flash) to craft a tailored response.
Architecture
┌──────────────────────────┐
│ User Request │
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ Query Analyzer │ ← intent detection, entities, time range
└────────────┬─────────────┘
│
┌──────────┼───────────┐
│ │ │
▼ ▼ ▼
Calendar GitHub Slack JIRA
Client Client Client Client
(fetch) (fetch) (fetch) (fetch)
│ │ │ │
└──────────┴───────────┴─────────┘
│
▼
┌──────────────────────────┐
│ Cache / Rank / Summarize │
└────────────┬─────────────┘
│
▼
┌──────────────────────────┐
│ Gemini Client (Chat) │ → context + prompt → AI answer
└──────────────────────────┘
Integrations & Required Credentials
| Service | Credentials / Env Vars | Notes |
|---|---|---|
| Google Calendar | config/credentials.json, config/token.json (generated) |
OAuth desktop credentials with Calendar scopes |
| GitHub | .env → GITHUB_TOKEN |
Personal Access Token with repo scope |
| Slack | .env → SLACK_USER_TOKEN |
User token with channels:read, channels:history, groups:*, im:*, search:read, users:read |
| JIRA | .env → JIRA_BASE_URL, JIRA_EMAIL, JIRA_API_TOKEN |
Jira Cloud site, email, and API token |
| Gemini | .env → GEMINI_API_KEY |
Google AI Studio API key |
Optional environment variables (with defaults in code):
GOOGLE_CREDENTIALS_PATH(defaultconfig/credentials.json)GOOGLE_TOKEN_PATH(defaultconfig/token.json)CALENDAR_TIMEZONE(used for time parsing defaults)
Make sure sensitive files (credentials and tokens) stay out of version control. .gitignore already excludes them.
Installation & Setup
-
Clone the repository
git clone <repo-url> cd MCP\ server -
Create & activate a Python environment
python3 -m venv .venv source .venv/bin/activate # Windows: .venv\Scripts\activate -
Install dependencies
pip install -r requirements.txt -
Provide credentials
- Place Google OAuth desktop credentials at
config/credentials.json. - Create a
.envfile (copy.env.example) and populate the tokens/keys listed above.
- Place Google OAuth desktop credentials at
-
Authenticate Google Calendar (first run) Running the server for the first time will launch a browser window for Google OAuth and produce
config/token.json.
Running the Server & UI
1. MCP Server (JSON-RPC over stdio)
python main.py
This registers tools such as chat, get_calendar_context, get_github_repositories, get_slack_mentions, get_jira_backlog, etc.
2. Streamlit Dashboard (optional UI)
streamlit run streamlit_app.py
Features predefined queries, quick actions, and a custom prompt box for Calendar/GitHub/Slack/JIRA.
3. CLI Test Scripts (optional)
interactive_client.pyfor command-line chat testing.slack_test.py,jira_test.pyfor quick credential and API verification.
Available MCP Tools
| Tool | Description |
|---|---|
chat |
Main conversational endpoint; auto-fetches relevant context across all services. |
| Calendar | |
get_calendar_context |
Analyze a query and return formatted calendar context. |
check_availability |
Check availability for a specific timeslot. |
get_upcoming_events |
List upcoming events. |
detect_conflicts |
Identify conflicts on a date. |
| GitHub | |
get_github_repositories |
List repositories (with metadata). |
get_github_issues |
Fetch open issues. |
get_github_pull_requests |
Fetch PRs. |
get_github_deployments |
Retrieve deployments + status. |
| Slack | |
get_slack_channels |
List channels. |
get_slack_unread |
Channels with unread messages. |
get_slack_mentions |
Recent mentions. |
| JIRA | |
get_jira_boards |
List boards. |
get_jira_issues |
General issue retrieval (board/JQL). |
get_my_jira_issues |
Issues assigned to the authenticated user (with fallbacks). |
get_jira_backlog |
Backlog items (Agile API + JQL fallback). |
Each tool returns a formatted string suitable for direct inclusion in a context package.
Submission Checklist
✅ GitHub Repository – contains the full MCP server implementation, connectors, UI, and test scripts.
✅ Context-Aware Workflow – intercept → analyze → fetch → assemble → deliver implemented across four services.
⚠️ Devpost Video Demo – still needed. Please record a short walkthrough showing:
- How a query flows through the system (e.g., via Streamlit UI).
- The resulting context assembly (logs/UI snippets).
- The Gemini-powered responses.
- Any unique 2.0 features (caching, correlation, summarization). Upload the video to Devpost along with the repo link.
Project Structure
MCP server/
├── main.py # Entry point for MCP server
├── streamlit_app.py # Optional Streamlit UI
├── interactive_client.py # Simple CLI client
├── slack_test.py / jira_test.py# Quick integration smoke tests
├── src/
│ ├── server.py # MCP tools & orchestration layer
│ ├── query_analyzer.py # NLP intent/time/entity detection
│ ├── context_cache.py # TTL cache for API responses
│ ├── context_ranker.py # Relevance scoring
│ ├── context_summarizer.py # Compression + summarization utilities
│ ├── context_correlator.py # Multi-source correlation engine
│ ├── context_formatter.py # Human-friendly context formatting
│ ├── gemini_client.py # Gemini chat integration
│ ├── calendar_client.py # Google Calendar wrapper
│ ├── github_client.py # GitHub REST wrapper
│ ├── slack_client.py # Slack WebClient wrapper
│ ├── jira_client.py # Jira REST (Agile + Core) wrapper
│ └── connectors/ # Connector facades per service
├── config/
│ ├── credentials.json # Google OAuth client (excluded from git)
│ └── token.json # Google OAuth token (excluded from git)
├── requirements.txt
├── .env.example
└── README.md (this file)
Troubleshooting
| Issue | Resolution |
|---|---|
| Google Calendar auth loop | Delete config/token.json and rerun to reauthenticate. Ensure OAuth consent screen has you as a test user. |
| GitHub 401 | Regenerate GITHUB_TOKEN (classic PAT) with repo scope. |
Slack missing_scope |
Add required scopes under User Token Scopes and reinstall the app. |
| JIRA 410 errors | Confirm you have access to the Jira Cloud site and use valid API tokens. The client already falls back to board-based queries when search fails. |
| Gemini errors | Verify GEMINI_API_KEY is correct and the selected model is available in your region/account. |
Logging is configured to stderr to avoid interfering with MCP stdio responses.
License & Contact
Created for the Build-Your-Own-MCP Challenge.
For questions, open an issue or reach out via the Devpost discussion board when submitting your demo.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.