Google Ads MCP Server

Google Ads MCP Server

Enables programmatic management of Google Ads campaigns, allowing users to monitor performance metrics, update budgets, and toggle campaign statuses. It supports real-time analytics, top performer analysis, and reporting in CSV or JSON formats.

Category
Visit Server

README

Google Ads MCP Server (Node.js)

A Model Context Protocol (MCP) server for managing Google Ads campaigns programmatically, built with Node.js.

Features

Campaign Management

  • ✅ Fetch campaign performance data
  • ✅ Get detailed campaign information
  • ✅ Pause/enable campaigns
  • ✅ Update campaign budgets

Analytics & Reporting

  • ✅ Performance summaries
  • ✅ Top performer analysis
  • ✅ Export to CSV/JSON
  • ✅ Custom date ranges

Real-time Data

  • ✅ Live API integration
  • ✅ Up-to-date metrics
  • ✅ Conversion tracking
  • ✅ Budget monitoring

Installation

Global Installation (Recommended for CLI use)

npm install -g @samihalawa/google-ads-mcp-server

Local Installation (For project integration)

npm install @samihalawa/google-ads-mcp-server

Or with pnpm:

pnpm add @samihalawa/google-ads-mcp-server

Configuration

Simple .env Configuration (No YAML file needed!)

Create a .env file with your Google Ads API credentials as inline JSON:

# Google Ads API Configuration (JSON format - all in one line)
GOOGLE_ADS_CONFIG='{"client_id":"YOUR_CLIENT_ID.apps.googleusercontent.com","client_secret":"YOUR_CLIENT_SECRET","developer_token":"YOUR_DEVELOPER_TOKEN","refresh_token":"YOUR_REFRESH_TOKEN","login_customer_id":"YOUR_MANAGER_CUSTOMER_ID"}'

# Customer ID to query (without dashes)
GOOGLE_ADS_CUSTOMER_ID=1234567890

That's it! No separate YAML files needed. Everything is in your .env file.

Example Configuration

GOOGLE_ADS_CONFIG='{"client_id":"963208150325-mmhibhl91g39ma9jsvrgacpleraq4nfu.apps.googleusercontent.com","client_secret":"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","developer_token":"i525AeFTAacFOtQtWBjY6g","refresh_token":"1//04OmKZJ58yhQaCgYIARAAGAQSNwF-L9IrfyrhE7W2zk00iStBE8dCRazdeUgXiMVxH-WIr9PEh6W3_RvjRKSZx-FH3l3Dun5vWOc","login_customer_id":"4850172260"}'
GOOGLE_ADS_CUSTOMER_ID=1248495560

Usage

Running the Server

# Load .env and run
node server.js

Or with npx (no installation):

npx @samihalawa/google-ads-mcp-server

Using with MCP Clients

Add to your MCP client configuration (e.g., Claude Desktop):

{
  "mcpServers": {
    "google-ads": {
      "command": "npx",
      "args": ["@samihalawa/google-ads-mcp-server"],
      "env": {
        "GOOGLE_ADS_CONFIG": "{\"client_id\":\"YOUR_CLIENT_ID\",\"client_secret\":\"YOUR_SECRET\",\"developer_token\":\"YOUR_TOKEN\",\"refresh_token\":\"YOUR_REFRESH\",\"login_customer_id\":\"YOUR_MANAGER_ID\"}",
        "GOOGLE_ADS_CUSTOMER_ID": "1234567890"
      }
    }
  }
}

Using with manus-mcp-cli

# Set environment variables
export GOOGLE_ADS_CONFIG='{"client_id":"...","client_secret":"...","developer_token":"...","refresh_token":"...","login_customer_id":"..."}'
export GOOGLE_ADS_CUSTOMER_ID="1234567890"

# List available tools
manus-mcp-cli tool list --server google-ads

# Get campaigns
manus-mcp-cli tool call get_campaigns --server google-ads --input '{"days": 30}'

# Get performance summary
manus-mcp-cli tool call get_performance_summary --server google-ads --input '{"days": 7}'

# Pause a campaign
manus-mcp-cli tool call pause_campaign --server google-ads --input '{"campaign_id": "23207843655"}'

Available Tools

1. get_campaigns

Fetch all campaigns with performance metrics.

Parameters:

  • days (number, optional): Number of days to look back (default: 30)
  • status (string, optional): Filter by status - ENABLED, PAUSED, REMOVED, or ALL (default: ENABLED)

Example:

{
  "days": 30,
  "status": "ENABLED"
}

2. get_campaign_details

Get detailed information about a specific campaign.

Parameters:

  • campaign_id (string, required): The campaign ID
  • days (number, optional): Number of days to look back (default: 30)

Example:

{
  "campaign_id": "23207843655",
  "days": 30
}

3. get_performance_summary

Get overall account performance summary.

Parameters:

  • days (number, optional): Number of days to look back (default: 30)

Example:

{
  "days": 7
}

4. get_top_performers

Get top performing campaigns by specified metric.

Parameters:

  • metric (string, optional): Metric to rank by - ctr, conversions, cost, clicks, impressions (default: ctr)
  • limit (number, optional): Number of top campaigns to return (default: 5)
  • days (number, optional): Number of days to look back (default: 30)

Example:

{
  "metric": "ctr",
  "limit": 5,
  "days": 30
}

5. pause_campaign

Pause a specific campaign.

Parameters:

  • campaign_id (string, required): The campaign ID to pause

Example:

{
  "campaign_id": "23207843655"
}

6. enable_campaign

Enable/resume a paused campaign.

Parameters:

  • campaign_id (string, required): The campaign ID to enable

Example:

{
  "campaign_id": "23207843655"
}

7. update_campaign_budget

Update the daily budget for a campaign.

Parameters:

  • campaign_id (string, required): The campaign ID
  • budget_euros (number, required): New daily budget in euros

Example:

{
  "campaign_id": "23207843655",
  "budget_euros": 20.00
}

8. export_report

Export campaign data to CSV or JSON format.

Parameters:

  • format (string, required): Export format - csv or json
  • days (number, optional): Number of days to look back (default: 30)

Example:

{
  "format": "csv",
  "days": 30
}

Example Workflows

Daily Campaign Monitoring

# Get performance summary
manus-mcp-cli tool call get_performance_summary --server google-ads --input '{"days": 1}'

# Check top performers
manus-mcp-cli tool call get_top_performers --server google-ads --input '{"metric": "conversions", "limit": 3, "days": 7}'

Campaign Optimization

# Get campaign details
manus-mcp-cli tool call get_campaign_details --server google-ads --input '{"campaign_id": "23207843655", "days": 30}'

# Update budget if performing well
manus-mcp-cli tool call update_campaign_budget --server google-ads --input '{"campaign_id": "23207843655", "budget_euros": 25.00}'

# Pause if underperforming
manus-mcp-cli tool call pause_campaign --server google-ads --input '{"campaign_id": "23207843655"}'

Reporting

# Export to CSV
manus-mcp-cli tool call export_report --server google-ads --input '{"format": "csv", "days": 30}'

# Export to JSON
manus-mcp-cli tool call export_report --server google-ads --input '{"format": "json", "days": 7}'

Troubleshooting

"GOOGLE_ADS_CONFIG environment variable is required"

  • Make sure you've set the GOOGLE_ADS_CONFIG environment variable
  • Check that the JSON is valid and properly escaped
  • Ensure all required fields are present

"Failed to initialize Google Ads client"

  • Verify all credentials are correct
  • Ensure refresh token is still valid
  • Check that the JSON format is correct

"Campaign not found"

  • Verify the campaign ID is correct
  • Check that you have access to the campaign
  • Ensure the campaign hasn't been removed

"Unauthorized" errors

  • Refresh token may have expired - generate a new one
  • Check that the developer token is approved
  • Verify OAuth credentials are correct

API Rate Limits

Google Ads API has rate limits:

  • Basic access: 15,000 operations per day
  • Standard access: 40,000 operations per day

The MCP server automatically handles rate limiting and retries.

Security

  • Never commit .env to version control
  • Store credentials securely
  • Use environment variables for sensitive data
  • Rotate refresh tokens regularly
  • The .gitignore file already excludes .env files

Support

For issues or questions:

  1. Check the Google Ads API documentation
  2. Review the MCP specification
  3. Check server logs for error messages
  4. Open an issue on GitHub

License

MIT License - See LICENSE file for details

Version History

1.1.0 (2025-11-24)

  • Breaking Change: Switched from YAML to inline JSON configuration in .env
  • Removed js-yaml dependency
  • Simplified configuration - no separate files needed
  • Updated documentation

1.0.0 (2025-11-24)

  • Initial Node.js release
  • 8 core tools for campaign management
  • Real-time API integration
  • CSV/JSON export support
  • Complete documentation

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured