Godot MCP Documentation Server
Provides AI assistants with direct access to the complete Godot Engine documentation, including classes, tutorials, and features. It enables developers to retrieve and analyze official documentation through natural language interfaces using the Model Context Protocol.
README
Godot MCP Documentation Server
中文文档 | English
A Model Context Protocol (MCP) server that provides AI assistants with access to the complete Godot Engine documentation, helping developers with Godot development by serving documentation directly to LLMs.
Purpose
This server bridges the gap between AI assistants and Godot documentation, allowing developers to get instant, accurate answers about Godot classes, tutorials, and features without leaving their AI chat interface.
Project Origin
This project is based on godot-mcp-docs by Nihilantropy, modified for local development on Windows without Docker.
Installation
-
Install uv (if not already installed):
# On Windows with PowerShell: Invoke-WebRequest -Uri https://astral.sh/uv/install.ps1 -UseBasicParsing | Invoke-Expression -
Clone the repository:
git clone https://github.com/Nihilantropy/godot-mcp-docs.git cd godot-mcp-docs -
Install Python dependencies:
uv syncThis command reads from
pyproject.tomland creates a virtual environment.Note:
uv syncusespyproject.tomlas the source of truth, notrequirements.txt. This is the modern Python packaging standard (PEP 517/518/621). Theuv.lockfile ensures consistent dependency versions across environments.
Setting Up Documentation
After installing dependencies, you need to download and process the Godot documentation:
-
Generate documentation:
uv run python .\docs_converter\godot_docs_converter.py -
Move docs folder to root: After conversion, move the generated
docsfolder to the project root directory. -
Generate documentation tree:
cd docs tree /f > docs_tree.txt cd ..Note: If you encounter Chinese encoding issues, use:
tree /f | Out-File -Encoding utf8 docs_tree.txt
Running the Server
Start the MCP server locally:
uv run python main.py
Configuring MCP Client
Claude Desktop Example
Add this to your Claude Desktop configuration file:
{
"mcpServers": {
"godot-mcp-docs": {
"command": "uv",
"args": [
"run",
"python",
"main.py"
]
}
}
}
Available Tools
get_documentation_tree()- Get a tree-style overview of the entire documentation structureget_documentation_file(file_path: str)- Retrieve the content of specific documentation files
Sample Usage
Explore documentation structure:
What documentation is available for Godot?
Get specific class documentation:
Show me the documentation for CharacterBody2D
Learn about tutorials:
What tutorials are available for 2D game development?
Get specific tutorial content:
Show me the first 2D game tutorial
Compare classes:
What's the difference between Node2D and CharacterBody2D?
Debugging
Option 1: FastMCP Dev UI (Recommended)
Start the server in dev mode:
uv run fastmcp dev main.py
Then open your browser to http://127.0.0.1:8000 to see all tools and test them interactively.
Option 2: MCP Inspector (Official Debugger)
Use Anthropic's official MCP Inspector:
npx @modelcontextprotocol/inspector uv run python main.py
This opens http://localhost:5173 in your browser, showing all tools, request/response logs, and allowing manual tool testing. No need to run uv run python main.py separately.
Option 3: HTTP API Debugging
Send JSON-RPC requests to the server:
Invoke-WebRequest -Uri http://localhost:8000/message `
-Method POST `
-ContentType "application/json" `
-Body '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "get_documentation_file",
"arguments": {
"file_path": "classes/class_characterbody2d.md"
}
},
"id": 1
}'
Or using curl:
curl -X POST http://localhost:8000/message `
-H "Content-Type: application/json" `
-d '{
"jsonrpc": "2.0",
"method": "tools/call",
"params": { "name": "search_godot_docs", "arguments": { "query": "DisplayServer" } },
"id": 1
}'
Understanding Path Resolution
The DOCS_DIR = Path("docs").resolve() in the code is relative to the current working directory (CWD) when you run Python, not the script location.
Example
Assume your directory structure:
D:\Codes\16_MCP\ <-- 根目录
├── main.py <-- 启动脚本
├── docs\ <-- 文档目录
└── srcs\
└── util\
└── docs_utils.py <-- 工具代码 (里面写了 Path("docs"))
Case A: Running from root directory
cd D:\Codes\16_MCP
python main.py
- Current Working Directory:
D:\Codes\16_MCP Path("docs")resolves to:D:\Codes\16_MCP\docs(Success)
Case B: Running from subdirectory (common error)
cd D:\Codes\16_MCP\srcs
python ../main.py
- Current Working Directory:
D:\Codes\16_MCP\srcs Path("docs")resolves to:D:\Codes\16_MCP\srcs\docs(Fails - no docs folder)
Best Practice
To ensure paths work regardless of where you run from, use __file__-based absolute positioning:
from pathlib import Path
# Get current script directory
CURRENT_SCRIPT_DIR = Path(__file__).resolve().parent
# Navigate to project root
PROJECT_ROOT = CURRENT_SCRIPT_DIR.parent.parent
# Locate docs directory
DOCS_DIR = (PROJECT_ROOT / "docs").resolve()
PowerShell Output Redirection Tips
Save output to file:
-
Overwrite (clears existing content):
ls > list.txt -
Append (preserves existing content):
ls >> list.txt -
With UTF8 encoding (recommended for Chinese):
ls | Out-File -FilePath output.txt -Encoding utf8 -
See on screen and save:
ls | Tee-Object -FilePath log.txt
Documentation Structure
The server provides access to the complete official Godot documentation with this structure:
docs/
├── _styleguides
├── _tools
│ └── redirects
├── about
├── classes
├── community
│ └── asset_library
├── contributing
│ ├── development
│ │ ├── compiling
│ │ ├── configuring_an_ide
│ │ ├── core_and_modules
│ │ ├── debugging
│ │ │ └── vulkan
│ │ ├── editor
│ │ └── file_formats
│ ├── documentation
│ └── workflow
├── getting_started
│ ├── first_2d_game
│ ├── first_3d_game
│ ├── introduction
│ └── step_by_step
├── img
└── tutorials
├── 2d
├── 3d
│ ├── global_illumination
│ ├── particles
│ └── procedural_geometry
├── animation
├── assets_pipeline
│ ├── escn_exporter
│ └── importing_3d_scenes
├── audio
├── best_practices
├── editor
├── export
├── i18n
├── inputs
├── io
├── math
├── migrating
├── navigation
├── networking
├── performance
│ └── vertex_animation
├── physics
│ └── interpolation
├── platform
│ ├── android
│ ├── ios
│ └── web
├── plugins
│ └── editor
├── rendering
├── scripting
│ ├── c_sharp
│ │ └── diagnostics
│ ├── cpp
│ ├── debug
│ ├── gdextension
│ └── gdscript
├── shaders
│ ├── shader_reference
│ └── your_first_shader
├── ui
└── xr
Recommended System Prompt
For optimal results when working with Godot, use this system prompt:
"When working with Godot game development questions, always search for the latest available documentation using the godot-mcp-docs tools. Start with
get_documentation_tree()to understand the documentation structure, then useget_documentation_file()to retrieve specific information about classes, tutorials, or features. Prioritize official Godot documentation over general knowledge when providing Godot-related assistance."
Updating Documentation
To update to a newer version of Godot documentation:
uv run python .\docs_converter\godot_docs_converter.py
cd docs
tree /f > docs_tree.txt
License
This project is licensed under the MIT License - see the LICENSE file for details.
The Godot documentation content follows the original Godot documentation licensing:
- Documentation content (excluding
classes/folder): CC BY 3.0 - Class reference files (
classes/folder): MIT License - Attribution: "Juan Linietsky, Ariel Manzur and the Godot community"
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.