GitInsight-MCP

GitInsight-MCP

Enables AI assistants to access and analyze GitHub profile data, providing insights on repositories, commit history, coding patterns, and generating portfolio summaries for developers and recruiters.

Category
Visit Server

README

πŸš€ GitInsight-MCP

https://github.com/user-attachments/assets/22716a0c-2dc6-4d00-a761-1fee7341afca

.

A Model Context Protocol (MCP) Server for GitHub Profile Integration

TypeScript MCP License: MIT GitHub Built with Claude

A learning project built to explore the Model Context Protocol (MCP) and MCP Inspector tool. This server provides GitHub profile integration and was entirely built in collaboration with Claude AI.

Author: Wael Marwani
Portfolio: marwaniwael.engineer
Email: wael.marwani@esprit.tn
Location: Ariana, Tunisia

πŸ€– Built with Claude AI - Every commit co-authored with Claude


πŸ“‹ Table of Contents


πŸ€– What is MCP?

The Model Context Protocol (MCP) is an open protocol that enables AI assistants to securely connect to external data sources and tools. Think of it as a standardized way for AI models like Claude to interact with your applications and services.

Key Concepts:

  • MCP Server: Provides tools and data (this project!)
  • MCP Client: AI assistant that uses the tools (e.g., Claude Desktop)
  • Tools: Functions that the AI can call to perform actions
  • Protocol: Standardized communication format using JSON-RPC

GitInsight-MCP implements an MCP server that exposes your GitHub profile data to AI assistants, allowing them to answer questions about your repositories, analyze your coding patterns, and generate portfolio insights. I Built This Project

I created GitInsight-MCP to:

πŸ” Explore the MCP Inspector - Wanted to see how MCP servers work and test them interactively
πŸ› οΈ Discover New MCP Tools - Learn about the Model Context Protocol ecosystem
πŸ€– Collaborate with Claude AI - Built entirely using Claude as a coding partner
πŸ“š Learn by Doing - Hands-on experience with TypeScript, Node.js, and GitHub API
πŸš€ Create Something Useful - A practical tool that actually works with my GitHub profile

This is a learning project showcasing:

  • AI-Assisted Development - Every line of code written with Claude
  • Modern Backend Stack - TypeScript, Node.js, MCP SDK
  • Real API Integration - GitHub Octokit, caching, error handling
  • Production Quality - Full documentation, proper architecture

Perfect for:

  • Developers exploring MCP and AI-assisted coding
  • Learning how to build tools that AI assistants can use
  • Understanding the Model Context Protocol specification
  • DevOps Engineers wanting to showcase AI integration skills
  • Full Stack Developers building MCP servers
  • Anyone creating an intelligent portfolio assistant

✨ Features

πŸ”§ Core Functionality

  • βœ… 8 Powerful MCP Tools - From basic queries to advanced portfolio generation
  • βœ… 3 MCP Resources - Readable developer profile, resume, and skills data
  • βœ… 3 MCP Prompts - Pre-configured for recruiters and technical assessment
  • βœ… Intelligent Caching - Reduces GitHub API calls and respects rate limits
  • βœ… Rate Limit Protection - Automatic handling of GitHub API constraints
  • βœ… Error Resilience - Comprehensive error handling with helpful messages
  • βœ… TypeScript Safety - Full type coverage for reliability

🎯 Recruiter-Focused Features

  • πŸ“Š Skills Matrix - Automated technical skills assessment with proficiency levels
  • πŸ“„ Portfolio Summary - Professional candidate evaluation ready for HR
  • πŸ“ Auto-Generated Resume - Markdown CV from GitHub data
  • 🎀 Recruiter Prompts - Pre-built evaluation templates for hiring managers

πŸ“Š Data Insights

  • πŸ“¦ Repository metadata (stars, forks, languages, topics)
  • πŸ“ Commit history and activity tracking
  • πŸ“ˆ Aggregate statistics and analytics
  • πŸ” Advanced filtering by technology, topic, or stars
  • πŸ“… Contribution patterns and streaks
  • πŸ’Ό Comprehensive skills categorization

🎨 Developer Experience

  • πŸš€ Easy setup with clear documentation
  • πŸ” Secure token-based authentication
  • 🎯 Clear error messages for debugging
  • πŸ“– Comprehensive inline code comments
  • πŸ§ͺ Production-ready architecture

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Claude Desktop β”‚  ← AI Assistant (MCP Client)
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚ MCP Protocol (JSON-RPC over stdio)
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ GitInsight-MCP  β”‚  ← This Server
β”‚   MCP Server    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚
    β”Œβ”€β”€β”€β”€β”΄β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β–Ό         β–Ό          β–Ό         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”
β”‚ GitHub β”‚ β”‚Cache β”‚ β”‚ Tools  β”‚ β”‚Errorβ”‚
β”‚ Client β”‚ β”‚Layer β”‚ β”‚Handler β”‚ β”‚ Mgmtβ”‚
β””β”€β”€β”€β”€β”¬β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”˜
     β”‚
     β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  GitHub API     β”‚  ← Data Source
β”‚  (Octokit)      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Flow:

  1. User asks Claude a question about your GitHub profile
  2. Claude calls GitInsight-MCP tools via MCP protocol
  3. Server checks cache or queries GitHub API
  4. Results are formatted and returned to Claude
  5. Claude presents insights to the user in natural language

πŸ“¦ Installation

Prerequisites

Step 1: Clone the Repository

```bash git clone https://github.com/marwaniiwael18/GitInsight-MCP.git cd GitInsight-MCP ```

Step 2: Install Dependencies

```bash npm install ```

Step 3: Build the Project

```bash npm run build ```


βš™οΈ Configuration

Step 1: Create Environment File

Copy the example environment file:

```bash cp .env.example .env ```

Step 2: Configure Environment Variables

Edit `.env` with your details:

```env

GitHub Personal Access Token

Generate at: https://github.com/settings/tokens

Required scopes: repo, read:user

GITHUB_TOKEN=ghp_your_actual_token_here

Your GitHub Username

GITHUB_USERNAME=marwaniiwael18

Cache Settings (optional)

CACHE_TTL_SECONDS=3600 CACHE_CHECK_PERIOD_SECONDS=600 ```

Creating a GitHub Token:

  1. Go to GitHub Settings β†’ Tokens
  2. Click "Generate new token (classic)"
  3. Select scopes: `repo`, `read:user`, `read:org`
  4. Copy the token and paste it in your `.env` file

Step 3: Configure Claude Desktop

Add this to your Claude Desktop config file:

macOS: `~/Library/Application Support/Claude/claude_desktop_config.json`
Windows: `%APPDATA%\Claude\claude_desktop_config.json`

```json { "mcpServers": { "gitinsight-mcp": { "command": "node", "args": [ "/absolute/path/to/GitInsight-MCP/dist/index.js" ], "env": { "GITHUB_TOKEN": "your_github_token_here", "GITHUB_USERNAME": "marwaniiwael18" } } } } ```

Important: Replace `/absolute/path/to/` with the actual path to your project!


πŸš€ Usage

Running the Server Standalone

```bash npm start ```

You should see: ```

GitInsight MCP Server - Starting...

GitHub User: marwaniiwael18 Cache TTL: 3600 seconds Tools Available: 6

GitHub API Rate Limit: 5000/5000 Server ready! Waiting for MCP client connections...

```

Using with Claude Desktop

  1. Restart Claude Desktop after configuration
  2. Start a new conversation
  3. Ask questions about your GitHub profile!

The server will automatically start when Claude needs it.


πŸ› οΈ Available Tools

1️⃣ `list_repositories`

Lists all your public repositories with metadata.

Parameters:

  • `use_cache` (boolean): Use cached data (default: true)
  • `sort_by` (string): Sort by 'stars', 'forks', 'updated', 'name'
  • `limit` (number): Maximum repositories to return

Returns: Array of repositories with name, description, stars, forks, language, topics, etc.


2️⃣ `get_repository_details`

Get detailed information about a specific repository.

Parameters:

  • `repository_name` (string, required): Repository name
  • `use_cache` (boolean): Use cached data
  • `include_readme` (boolean): Include README content

Returns: Full repository details, topics, README (if requested)


3️⃣ `get_recent_commits`

Fetch recent commits for a repo or across all repos.

Parameters:

  • `repository_name` (string, optional): Specific repo or all repos
  • `limit` (number): Max commits to return (default: 50)
  • `use_cache` (boolean): Use cached data

Returns: Array of commits with SHA, message, author, date, URL


4️⃣ `get_repository_stats`

Calculate aggregate statistics across all repositories.

Parameters:

  • `use_cache` (boolean): Use cached data

Returns:

  • Total repositories, stars, forks
  • Language breakdown with percentages
  • Most starred/forked repos
  • Recently updated repos
  • Total open issues

5️⃣ `search_projects_by_tech`

Search and filter repositories by technology.

Parameters:

  • `language` (string): Filter by language (e.g., "Python", "JavaScript")
  • `topic` (string): Filter by topic (e.g., "devops", "ai")
  • `min_stars` (number): Minimum stars required
  • `sort_by` (string): Sort field
  • `order` (string): 'asc' or 'desc'

Returns: Filtered and sorted repositories


6️⃣ `get_contribution_activity`

Analyze contribution activity and patterns.

Parameters:

  • `use_cache` (boolean): Use cached data

Returns:

  • Total commits
  • Repositories contributed to
  • Most active day
  • Contribution streak

7️⃣ `get_skills_matrix` 🎯 FOR RECRUITERS

Generate a comprehensive technical skills assessment matrix.

Parameters:

  • `use_cache` (boolean): Use cached data

Returns:

  • Developer profile summary
  • Categorized technical skills (Languages, DevOps, Cloud)
  • Proficiency levels (Expert/Advanced/Intermediate/Beginner)
  • Domain expertise breakdown (DevOps, Web Dev, AI/ML, etc.)
  • Top languages with percentages
  • Project counts per skill

Perfect for: HR screening, technical assessment, candidate evaluation


8️⃣ `generate_portfolio_summary` πŸ“„ FOR RECRUITERS

Create a recruiter-friendly professional portfolio summary.

Parameters:

  • `use_cache` (boolean): Use cached data

Returns:

  • Candidate profile (name, title, contact, location)
  • Professional summary paragraph
  • Key achievements list
  • Featured projects with highlights and technologies
  • Technical proficiency breakdown
  • GitHub metrics (repos, stars, contributions, streak)
  • Availability status

Perfect for: Initial screening, candidate presentation, hiring decisions


πŸ“š MCP Resources

Resources are readable data endpoints that AI assistants can access:

Resource: `portfolio://profile`

Developer profile with contact information and specializations (JSON)

Resource: `portfolio://resume`

Auto-generated professional resume from GitHub data (Markdown)

Resource: `portfolio://skills`

Complete skills matrix with proficiency assessment (JSON)

Usage Example: Ask Claude: "Read my portfolio profile" or "Show me my resume"


🎀 MCP Prompts

Pre-configured prompt templates for common scenarios:

Prompt: `recruiter_evaluation`

🎯 Comprehensive candidate evaluation for HR and recruiters
Combines portfolio summary, skills matrix, stats, and activity into a hiring recommendation

Prompt: `technical_assessment`

πŸ”§ Deep technical analysis for engineering managers
Analyzes code quality, tech stack depth, and suggests interview questions

Prompt: `portfolio_showcase`

πŸ’Ό Impressive portfolio presentation
Creates a compelling narrative highlighting achievements and value proposition

Usage Example: In Claude Desktop or MCP Inspector, select a prompt to execute the evaluation automatically


πŸ’¬ Example Queries

Try asking Claude these questions:

For Developers:

"What are my most starred repositories?"

"Show me statistics about my GitHub profile"

"What programming languages do I use most?"

For Project Discovery:

"Find all my DevOps projects"

"Show me my Python projects with the most stars"

"What are my recent AI/ML repositories?"

For Recruiters & HR: 🎯

"Generate a portfolio summary for this candidate"

"Show me the skills matrix with proficiency levels"

"Read the portfolio resume"

"Use the recruiter_evaluation prompt"

"What are this developer's key strengths?"

For Activity Tracking:

"What have I been working on recently?"

"Show my commit activity for the last month"

"What's my contribution streak?"

For Detailed Analysis:

"Give me details about my DEVOPS-Project repository"

"Analyze my AWS-App project and tell me about it"

"Generate a technical assessment for hiring managers"


πŸ‘¨β€πŸ’» Development

Scripts

```bash

Build TypeScript

npm run build

Development mode (watch for changes)

npm run dev

Run the server

npm start

Test with MCP Inspector

npm run inspector ```

MCP Inspector

Test your server with the official MCP Inspector:

```bash npm run inspector ```

This opens a web interface to test your tools interactively.


πŸ“ Project Structure

``` GitInsight-MCP/ β”œβ”€β”€ src/ β”‚ β”œβ”€β”€ index.ts # MCP server entry point β”‚ β”œβ”€β”€ config.ts # Environment configuration β”‚ β”œβ”€β”€ github-client.ts # GitHub API wrapper (Octokit) β”‚ β”œβ”€β”€ cache.ts # Caching service β”‚ β”œβ”€β”€ utils.ts # Helper functions β”‚ β”œβ”€β”€ types/ β”‚ β”‚ └── index.ts # TypeScript type definitions β”‚ └── tools/ β”‚ β”œβ”€β”€ index.ts # Tools barrel export β”‚ β”œβ”€β”€ list-repositories.ts β”‚ β”œβ”€β”€ get-repository-details.ts β”‚ β”œβ”€β”€ get-recent-commits.ts β”‚ β”œβ”€β”€ get-repository-stats.ts β”‚ β”œβ”€β”€ search-projects-by-tech.ts β”‚ └── get-contribution-activity.ts β”œβ”€β”€ dist/ # Compiled JavaScript β”œβ”€β”€ .env # Environment variables (create this) β”œβ”€β”€ .env.example # Environment template β”œβ”€β”€ package.json # Dependencies β”œβ”€β”€ tsconfig.json # TypeScript config β”œβ”€β”€ claude-desktop-config.json # Example Claude config └── README.md # This file ```


πŸ”§ Technical Stack

Technology Purpose
TypeScript Type-safe development
Node.js Runtime environment
@modelcontextprotocol/sdk MCP protocol implementation
@octokit/rest GitHub API client
node-cache In-memory caching
dotenv Environment configuration

πŸ› Troubleshooting

Issue: "Missing required environment variables"

Solution: Create a `.env` file with `GITHUB_TOKEN` and `GITHUB_USERNAME`

Issue: "GitHub API rate limit exceeded"

Solution:

  • Wait for the rate limit to reset (shown in server logs)
  • Use caching (`use_cache: true`)
  • Authenticate with a valid token (increases limit to 5000/hour)

Issue: "Invalid GitHub token"

Solution:

  • Generate a new token at https://github.com/settings/tokens
  • Ensure scopes include: `repo`, `read:user`
  • Check for typos in your `.env` file

Issue: Claude Desktop doesn't show the server

Solution:

  • Check the config file path is correct for your OS
  • Use absolute paths in `claude_desktop_config.json`
  • Restart Claude Desktop completely
  • Check Claude Desktop logs for errors

Issue: Server crashes on startup

Solution:

  • Run `npm run build` first
  • Check Node.js version is 18+
  • Verify all dependencies installed: `npm install`

🀝 Contributing

Contributions are welcome! Feel free to:

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

πŸ“„ License

MIT License - see LICENSE file for details


🌟 Showcase

Featured Projects Highlighted by GitInsight-MCP:

  • AWS-App - Skill-sharing platform (JavaScript)
  • Application_Web_Distibue - Microservices architecture (Spring Boot + Angular)
  • DEVOPS-Project - CI/CD pipeline (Jenkins, Docker)
  • Car-Number-Plates-Detection-IA-Model - Computer Vision (OpenCV)
  • Parkini - Smart parking with face recognition
  • SentinelX-Diagnostic-Platform - Recent diagnostic platform

πŸ“ž Contact

Wael Marwani
πŸ“§ Email: wael.marwani@esprit.tn
🌐 Portfolio: marwaniwael.engineer
πŸ’Ό GitWhat I Learned

Building this project with Claude taught me:

  • MCP Protocol Implementation - How to build servers for AI assistants
  • MCP Inspector Usage - Testing and debugging MCP tools interactively
  • AI-Assisted Development - Collaborating with Claude to write production code
  • RESTful API Integration - GitHub API via Octokit
  • Caching Strategies - Performance optimization techniques
  • Error Handling - Building resilient systems
  • TypeScript Best Practices - Type safety and modern JavaScript
  • Git Collaboration - Using co-authored commits with AI

🀝 Development Process

This entire project was built using Claude AI:

βœ… All code written through Claude conversations
βœ… Every commit co-authored: Co-authored-by: claude <noreply@anthropic.com>
βœ… Architecture designed collaboratively
βœ… Documentation generated with AI assistance
βœ… Debugging and testing done together

Why this matters: Demonstrates how AI can be a powerful coding partner for learning and building real projects.


Built with ❀️ and πŸ€– by Wael Marwani & Claude
A collaboration between human curiosity and AI assistance

⭐ Star this repo if you're interested in MCP or AI-assisted development

Built with ❀️ by Wael Marwani
Showcasing DevOps expertise through AI integration

⭐ Star this repo if you find it useful!

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured