GitBook MCP Server
Provides programmatic access to GitBook's API, enabling AI assistants to search, retrieve, and analyze documentation content across organizations, spaces, and collections with 12 tools and 6 AI-powered prompts.
README
GitBook MCP Server Reference
A Model Context Protocol (MCP) server that provides access to GitBook's API for AI assistants and LLM applications.
Overview
The GitBook MCP server enables programmatic access to GitBook Organizations, Spaces, Collections, and Content through a standardized MCP interface. It provides 12 tools for content operations and 6 AI-powered prompts for documentation workflows.
Quick Setup
Prerequisites
- GitBook API token (obtain from https://app.gitbook.com/account/developer)
- Your GitBook Organization ID (optional but recommended)
IDE and AI Assistant Integration
VS Code (with GitHub Copilot)
Add to your VS Code MCP settings:
{
"servers": {
"gitbook-mcp": {
"type": "stdio",
"command": "npx",
"args": [
"gitbook-mcp",
"--organization-id=your_organization_id_here"
],
"env": {
"GITBOOK_API_TOKEN": "gb_api_your_token_here"
}
}
}
}
Claude Desktop
Add to your Claude Desktop configuration (%APPDATA%\Claude\claude_desktop_config.json on Windows or ~/Library/Application Support/Claude/claude_desktop_config.json on macOS):
{
"mcpServers": {
"gitbook-mcp": {
"command": "npx",
"args": ["gitbook-mcp", "--organization-id=your_organization_id"],
"env": {
"GITBOOK_API_TOKEN": "gb_api_your_token_here"
}
}
}
}
See https://modelcontextprotocol.io/quickstart/user for details.
GitHub Copilot plugin for JetBrains IDEs (IntelliJ IDEA, WebStorm, etc.):
Add to your GitHub Copilot MCP settings for JetBrains IDEs (the path may vary by product and OS, e.g., ~/.config/github-copilot/intellij/mcp.json for IntelliJ on Linux/macOS, or the equivalent directory for your JetBrains IDE and platform):
{
"servers": {
"gitbook-mcp": {
"command": "npx",
"args": [
"gitbook-mcp",
"--organization-id=your_organization_id_here"
],
"env": {
"GITBOOK_API_TOKEN": "gb_api_your_token_here"
}
}
}
}
JetBrains AI Assistant
Add to your JetBrains AI Assistant MCP configuration (see official docs for the exact path):
Getting Your GitBook Credentials
- API Token: Visit https://app.gitbook.com/account/developer to generate your API token
- Organization ID: Use the
list_organizationstool after setup to find your organization ID - Space ID (optional): Use the
list_spacestool (requires a valid organization ID and API token) to find specific space IDs - Space ID (optional): Use the
list_spacestool to find specific space IDs
Configuration Options
You can configure the server using:
- CLI arguments:
--organization-id,--space-id - Environment variables in MCP config: Set via the
envobject in your MCP configuration - System environment variables:
GITBOOK_API_TOKEN,GITBOOK_ORGANIZATION_ID,GITBOOK_SPACE_ID
Note: .env files are only supported when running the server locally for development, not when using npx gitbook-mcp.
API Reference
Tools
The GitBook MCP server provides 12 tools organized into functional categories. Each tool includes behavioral hints:
- 📖 Read-only: Tool only reads data and doesn't modify anything
- 🔄 Idempotent: Repeated calls with same args have no additional effect with the same result
- 🌐 Open-world: Tool interacts with external entities
Organization Discovery
List Organizations (list_organizations) 📖 🔄 🌐
Lists all accessible GitBook organizations.
Parameters: None
Returns:
{
"organizations": [
{
"id": "string",
"title": "string",
"urls": {
"app": "string",
"public": "string"
}
}
]
}
Space Management
List Spaces (list_spaces) 📖 🔄 🌐
Lists spaces, optionally filtered by organization.
Parameters:
organizationId(optional): Organization ID to filter spaces
Returns:
{
"spaces": [
{
"id": "string",
"title": "string",
"visibility": "string",
"urls": {
"app": "string",
"public": "string"
}
}
]
}
Get Space Details (get_space) 📖 🔄 🌐
Retrieves detailed information about a specific space.
Parameters:
spaceId(required): The ID of the space to retrieve
Returns:
{
"id": "string",
"title": "string",
"description": "string",
"visibility": "string",
"urls": {
"app": "string",
"public": "string"
}
}
Get Space Content (get_space_content) 📖 🔄 🌐
Retrieves the content structure and pages of a space.
Parameters:
spaceId(optional): The ID of the space (uses default if configured)
Returns:
{
"pages": [
{
"id": "string",
"title": "string",
"slug": "string",
"path": "string"
}
]
}
Search Content (search_content) 📖 🔄 🌐
Searches for content within a space using full-text search.
Parameters:
query(required): Search query stringspaceId(optional): The ID of the space to search (uses default if configured)
Returns:
{
"results": [
{
"id": "string",
"title": "string",
"excerpt": "string",
"url": "string"
}
]
}
Content Retrieval
Get Page Content (get_page_content) 📖 🔄 🌐
Retrieves the content of a specific page.
Parameters:
pageId(required): The ID of the page to retrievespaceId(optional): The ID of the space containing the pageformat(optional): Output format ("document"or"markdown", defaults to"document")metadata(optional): Include revision metadata (boolean, defaults tofalse)computed(optional): Include computed revision data (boolean, defaults tofalse)
Returns:
{
"id": "string",
"title": "string",
"content": "string",
"format": "string"
}
Get Page by Path (get_page_by_path) 📖 🔄 🌐
Retrieves page content using the page path.
Parameters:
pagePath(required): The path of the page to retrievespaceId(optional): The ID of the space containing the page
Returns:
{
"id": "string",
"title": "string",
"content": "string",
"path": "string"
}
File Management
Get Space Files (get_space_files) 📖 🔄 🌐
Lists all files in a space.
Parameters:
spaceId(optional): The ID of the space (uses default if configured)
Returns:
{
"files": [
{
"id": "string",
"name": "string",
"downloadURL": "string",
"size": "number"
}
]
}
Get File Details (get_file) 📖 🔄 🌐
Retrieves details of a specific file.
Parameters:
fileId(required): The ID of the file to retrievespaceId(optional): The ID of the space containing the file
Returns:
{
"id": "string",
"name": "string",
"downloadURL": "string",
"size": "number",
"uploadedAt": "string"
}
Collection Management
List Collections (list_collections) 📖 🔄 🌐
Lists all accessible collections.
Parameters:
organizationId(optional): Organization ID to filter collections
Returns:
{
"collections": [
{
"id": "string",
"title": "string",
"description": "string"
}
]
}
Get Collection Details (get_collection) 📖 🔄 🌐
Retrieves details of a specific collection.
Parameters:
collectionId(required): The ID of the collection to retrieve
Returns:
{
"id": "string",
"title": "string",
"description": "string",
"spaces": "number"
}
Get Collection Spaces (get_collection_spaces) 📖 🔄 🌐
Lists all spaces within a collection.
Parameters:
collectionId(required): The ID of the collection
Returns:
{
"spaces": [
{
"id": "string",
"title": "string",
"visibility": "string"
}
]
}
Prompts
The GitBook MCP server provides 6 AI-powered prompts for documentation workflows:
Fetch Documentation (fetch_documentation)
Fetches and analyzes GitBook documentation content for specific topics.
Parameters:
topic(required): The topic or subject to search for and analyzespaceId(optional): The ID of the space to search (uses default if configured)includeStructure(optional): Set to "true" to include space structure
Returns: A comprehensive analysis of documentation related to the specified topic, including:
- Relevant pages and sections
- Content summaries
- Gaps or areas needing improvement
Analyze Content Gaps (analyze_content_gaps)
Identifies gaps and missing content in documentation.
Parameters:
spaceId(optional): The ID of the space to analyze (uses default if configured)comparisonSource(optional): Source to compare against (default: "internal analysis")
Returns: A detailed gap analysis including:
- Missing topics and incomplete sections
- Coverage gaps prioritized by importance
- Suggestions for new content areas
Content Audit (content_audit)
Performs quality audits of documentation content.
Parameters:
spaceId(optional): The ID of the space to audit (uses default if configured)auditCriteria(optional): Specific criteria to audit (default: "general quality and consistency")
Returns: A comprehensive quality assessment including:
- Content quality and consistency review
- Outdated information identification
- Writing style and formatting recommendations
Documentation Summary (documentation_summary)
Generates comprehensive summaries of GitBook spaces.
Parameters:
spaceId(optional): The ID of the space to summarize (uses default if configured)summaryType(optional): Type of summary - "overview", "technical", "user-guide", or "custom" (default: "overview")
Returns: A structured summary including:
- Space structure and content organization
- Main topics and themes
- Target audience and use cases
Content Optimization (content_optimization)
Optimizes content for SEO, readability, structure, or performance.
Parameters:
spaceId(optional): The ID of the space to optimize (uses default if configured)optimizationType(required): Type of optimization - "SEO", "readability", "structure", or "performance"targetMetrics(optional): Specific metrics or goals to optimize for
Returns: Optimization recommendations including:
- Specific improvement strategies
- Priority-ranked optimization opportunities
- Implementation guidance
Configuration Reference
The GitBook MCP server supports multiple configuration methods with the following precedence (highest to lowest):
- CLI Arguments - Passed when starting the MCP server
- Configuration Files - Embedded in project configuration files
- Environment Variables - Set in
.env.localor system environment
Environment Variables
| Variable | Required | Type | Description |
|---|---|---|---|
GITBOOK_API_TOKEN |
Yes | string | GitBook API token (obtain from https://app.gitbook.com/account/developer) |
GITBOOK_ORGANIZATION_ID |
No | string | Default organization ID for operations |
GITBOOK_SPACE_ID |
No | string | Default space ID for single-space projects |
Note: Environment variables can be set in
.env.local,.env, or your system environment.
CLI Arguments
| Argument | Alias | Type | Description |
|---|---|---|---|
--organization-id |
--org |
string | Organization ID to work with |
--space-id |
--space |
string | Default space for operations |
Example:
node dist/index.js --organization-id your-org-id --space-id your-space-id
Additional Configuration Files
Typically these files are provided as context to the AI assistant, which means you can store project-based configuration.
.github/copilot-instructions.md.cursorrules.cursor/rules/rules.md.cursor/rules/instructions.md
e.g.
Format:
## GitBook Configuration
For GitBook MCP operations, use the following configuration:
- organization-id: your-org-id-here
- space-id: your-space-id-here
Default Parameter Behavior
When GITBOOK_ORGANIZATION_ID or GITBOOK_SPACE_ID are configured:
- Tools marked as "optional" can omit the corresponding ID parameters
- The configured default values will be used automatically
- Explicit parameters in tool calls override defaults
Development
Prerequisites
- Node.js 20+
- npm
- GitBook API token (obtain from https://app.gitbook.com/account/developer)
Installation & Setup
git clone https://github.com/rickysullivan/gitbook-mcp.git
cd gitbook-mcp
npm install
npm run setup
# Add your GITBOOK_API_TOKEN to .env.local (for local development only)
Development
npm run dev
Debugging
DEBUG=1 npm run dev
Add the MCP to VS Code for development
You will need to use node as the command when running locally.
The first arg should be the path to the compiled JavaScript output (e.g., dist/index.js).
{
"servers": {
"gitbook-mcp-dev": {
"type": "stdio",
"command": "node",
"args": [
"/my/path/to/gitbook-mcp/dist/index.js",
"--organization-id=Luj2l6y6cIUPXJwbC574"
],
"env": {
"GITBOOK_API_TOKEN": "gb_api_UHEGTNsMg0ONPTnm0LpsJNBCCikQyOMkBTtZNDAB"
}
}
}
}
Testing
There are currently no unit or integration tests; running npm run test only checks that the TypeScript code compiles successfully (type-check/build verification), and does not execute any actual tests.
npm run test
Error Handling
Common Error Codes
| Error Code | Description | Resolution |
|---|---|---|
401 |
Unauthorized - Invalid API token | Verify GITBOOK_API_TOKEN is correct |
403 |
Forbidden - Insufficient permissions | Check space/organization access permissions |
404 |
Not Found - Resource doesn't exist | Verify space/page/collection IDs are correct |
429 |
Rate Limited - Too many requests | Implement request throttling |
500 |
Internal Server Error | Check server logs for detailed error information |
Troubleshooting
Token Issues:
- Ensure token starts with
gb_live_ - Verify token has not expired
- Check token permissions in GitBook settings
ID Resolution:
- Use
list_organizationsto find valid organization IDs - Use
list_spacesto find valid space IDs - Use
get_space_contentto find valid page IDs
Configuration Issues:
- Verify environment variables are properly set
- Check file permissions on configuration files
- Ensure CLI arguments are properly formatted
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Submit a pull request
License
MIT License - see the LICENSE file for details.
Related Documentation
Disclaimer
This project is independently developed and is not officially affiliated with, endorsed by, or sponsored by GitBook.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.