Git Commit Message Generator MCP Server

Git Commit Message Generator MCP Server

An intelligent MCP server that automatically generates Conventional Commits style commit messages by analyzing git diffs using LLM providers like DeepSeek and Groq. It enables developers to maintain standardized version history through natural language interactions in supported MCP clients.

Category
Visit Server

README

Git Commit Message Generator MCP Server

Python 3.10+ License: MIT MCP Compatible

An intelligent MCP server that automatically generates Conventional Commits style commit messages using LLM providers like DeepSeek and Groq.

Features

  • AI-Powered: Leverages LLM providers (DeepSeek, Groq) for intelligent commit message generation
  • Conventional Commits: Follows industry-standard commit message conventions
  • Multi-Provider: Supports multiple LLM providers with easy switching
  • MCP Compatible: Works seamlessly with Claude, Cursor, Gemini CLI, and other MCP clients
  • Easy Setup: Simple configuration via environment variables

Table of Contents

Quick Start

  1. Clone and install:

    git clone https://github.com/FradSer/mcp-server-git-cz.git
    cd mcp-server-git-cz
    uv venv && uv pip install -r requirements.txt
    
  2. Configure environment:

    cp .env.example .env
    # Edit .env with your API keys
    
  3. Run the server:

    uv run mcp-server-git-cz
    

Installation

Prerequisites

Step-by-step Installation

  1. Clone the repository:

    git clone https://github.com/FradSer/mcp-server-git-cz.git
    cd mcp-server-git-cz
    
  2. Create virtual environment and install dependencies:

    uv venv
    uv pip install -r requirements.txt
    
  3. Set up environment variables:

    cp .env.example .env
    

    Edit .env file:

    DEEPSEEK_API_KEY=your_deepseek_api_key
    GROQ_API_KEY=your_groq_api_key
    LLM_PROVIDER=deepseek  # or groq
    

Configuration

Environment Variables

Variable Description Default Required
DEEPSEEK_API_KEY DeepSeek API key - Yes (if using DeepSeek)
GROQ_API_KEY Groq API key - Yes (if using Groq)
LLM_PROVIDER LLM provider to use deepseek No

Transport Options

The server supports multiple transport methods:

# STDIO transport (recommended)
uv run mcp-server-git-cz

# SSE transport
uv run mcp-server-git-cz --transport sse --port 8000

Usage

The server exposes a single tool: generate_commit_message that analyzes your git diff and generates conventional commit messages.

Basic Example

import asyncio
from mcp.client.session import ClientSession
from mcp.client.stdio import StdioServerParameters, stdio_client

async def main():
    async with stdio_client(
        StdioServerParameters(command="uv", args=["run", "mcp-server-git-cz"])
    ) as (read, write):
        async with ClientSession(read, write) as session:
            await session.initialize()
            
            # Generate commit message
            result = await session.call_tool("generate_commit_message", {})
            print(result)

asyncio.run(main())

MCP Client Setup

Note: Replace /path/to/mcp-server-git-cz with your actual project directory path in all configurations below.

Claude Code

# Project scope (recommended for teams)
claude mcp add git-cz -s project -- uv run --python /path/to/mcp-server-git-cz/.venv/bin/python -m mcp_server_git_cz

# User scope (personal use)
claude mcp add git-cz -s user -- uv run --python /path/to/mcp-server-git-cz/.venv/bin/python -m mcp_server_git_cz

Cursor

Add to Cursor settings:

{
  "mcpServers": {
    "git-cz": {
      "command": "uv",
      "args": ["run", "--python", "/path/to/mcp-server-git-cz/.venv/bin/python", "-m", "mcp_server_git_cz"],
      "env": {},
      "transport": "stdio"
    }
  }
}

Gemini CLI

Add to ~/.gemini/settings.json:

{
  "mcpServers": {
    "git-cz": {
      "command": "uv",
      "args": ["run", "--python", "/path/to/mcp-server-git-cz/.venv/bin/python", "-m", "mcp_server_git_cz"],
      "env": {}
    }
  }
}

<details> <summary>Detailed Setup Instructions</summary>

Finding Your Paths

  1. Get virtual environment path:

    cd mcp-server-git-cz
    uv venv
    which python  # Copy this path
    
  2. Get project directory:

    pwd  # Copy this path
    
  3. Update configurations with your actual paths

Advanced Configuration

With Environment Variables

{
  "mcpServers": {
    "git-cz": {
      "command": "uv",
      "args": ["run", "--python", "/path/to/mcp-server-git-cz/.venv/bin/python", "-m", "mcp_server_git_cz"],
      "env": {
        "DEEPSEEK_API_KEY": "your_key_here",
        "LLM_PROVIDER": "deepseek"
      }
    }
  }
}

With Working Directory

{
  "mcpServers": {
    "git-cz": {
      "command": "uv",
      "args": ["run", "--python", "/path/to/mcp-server-git-cz/.venv/bin/python", "-m", "mcp_server_git_cz"],
      "cwd": "/path/to/mcp-server-git-cz",
      "env": {}
    }
  }
}

</details>

Examples

Using with MCP Clients

Once configured, you can interact with the tool using natural language:

  • "Generate a commit message for my current changes"
  • "Create a conventional commit message based on my git diff"
  • "Help me write a commit message following conventional commits"

The server will:

  1. Analyze your current git diff
  2. Generate a conventional commit message using AI
  3. Return the formatted message for review

Example Output

feat(auth): add OAuth2 integration with GitHub

- Implement OAuth2 authentication flow
- Add GitHub provider configuration
- Update user model to support external auth
- Add tests for authentication endpoints

Closes #123

Contributing

We welcome contributions! Please follow these guidelines:

Development Setup

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes
  4. Run tests: make test
  5. Commit using conventional commits: git commit -m 'feat: add amazing feature'
  6. Push to your branch: git push origin feature/amazing-feature
  7. Open a Pull Request

Code Style

  • Follow PEP 8 for Python code
  • Use Black for code formatting
  • Add type hints where appropriate
  • Write tests for new features

Reporting Issues

Found a bug? Have a feature request? Please open an issue with:

  • Clear description of the problem
  • Steps to reproduce
  • Expected vs actual behavior
  • Environment details

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

Acknowledgments


<div align="center"> <strong>Made with ❤️ for the developer community</strong> <br> <sub>⭐ Star this repo if you find it useful!</sub> </div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured