GigAPI MCP Server

GigAPI MCP Server

An MCP server that provides seamless integration with Claude Desktop for querying and managing timeseries data in GigAPI Timeseries Lake.

Category
Visit Server

README

<img src="https://github.com/user-attachments/assets/5b0a4a37-ecab-4ca6-b955-1a2bbccad0b4" />

GigAPI MCP Server

PyPI - Version CodeQL

An MCP server for GigAPI Timeseries Lake that provides seamless integration with Claude Desktop and other MCP-compatible clients.

Features

GigAPI Tools

  • run_select_query
    • Execute SQL queries on your GigAPI cluster.
    • Input: sql (string): The SQL query to execute, database (string): The database to execute against.
    • All queries are executed safely through GigAPI's HTTP API with NDJSON format.
  • list_databases
    • List all databases on your GigAPI cluster.
    • Input: database (string): The database to use for the SHOW DATABASES query (defaults to "mydb").
  • list_tables
    • List all tables in a database.
    • Input: database (string): The name of the database.
  • get_table_schema
    • Get schema information for a specific table.
    • Input: database (string): The name of the database, table (string): The name of the table.
  • write_data
    • Write data using InfluxDB Line Protocol format.
    • Input: database (string): The database to write to, data (string): Data in InfluxDB Line Protocol format.
  • health_check
    • Check the health status of the GigAPI server.
  • ping
    • Ping the GigAPI server to check connectivity.

Quick Start

1. Install the MCP Server

Option A: From PyPI (Recommended)

# The package will be available on PyPI after the first release
# Users can install it directly with uv
uv run --with mcp-gigapi --python 3.11 mcp-gigapi --help

Option B: From Source

# Clone the repository
git clone https://github.com/gigapi/mcp-gigapi.git
cd mcp-gigapi

# Install dependencies
uv sync

2. Configure Claude Desktop

  1. Open the Claude Desktop configuration file located at:
    • On macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • On Windows: %APPDATA%/Claude/claude_desktop_config.json
  2. Add the following configuration:

For the Public Demo (Recommended for Testing)

{
  "mcpServers": {
    "mcp-gigapi": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp-gigapi",
        "--python",
        "3.13",
        "mcp-gigapi"
      ],
      "env": {
        "GIGAPI_HOST": "gigapi.fly.dev",
        "GIGAPI_PORT": "443",
        "GIGAPI_TIMEOUT": "30",
        "GIGAPI_VERIFY_SSL": "true",
        "GIGAPI_DEFAULT_DATABASE": "mydb"
      }
    }
  }
}

For Local Development

{
  "mcpServers": {
    "mcp-gigapi": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp-gigapi",
        "--python",
        "3.13",
        "mcp-gigapi"
      ],
      "env": {
        "GIGAPI_HOST": "localhost",
        "GIGAPI_PORT": "7971",
        "GIGAPI_TIMEOUT": "30",
        "GIGAPI_VERIFY_SSL": "false",
        "GIGAPI_DEFAULT_DATABASE": "mydb"
      }
    }
  }
}

With Authentication

{
  "mcpServers": {
    "mcp-gigapi": {
      "command": "uv",
      "args": [
        "run",
        "--with",
        "mcp-gigapi",
        "--python",
        "3.13",
        "mcp-gigapi"
      ],
      "env": {
        "GIGAPI_HOST": "your-gigapi-server",
        "GIGAPI_PORT": "7971",
        "GIGAPI_USERNAME": "your_username",
        "GIGAPI_PASSWORD": "your_password",
        "GIGAPI_TIMEOUT": "30",
        "GIGAPI_VERIFY_SSL": "true",
        "GIGAPI_DEFAULT_DATABASE": "your_database"
      }
    }
  }
}
  1. Important: Replace the uv command with the absolute path to your uv executable:
    which uv  # Find the path
    
  2. Restart Claude Desktop to apply the changes.

API Compatibility

This MCP server is designed to work with GigAPI's HTTP API endpoints:

Query Endpoints

  • POST /query?db={database}&format=ndjson - Execute SQL queries with NDJSON response format
  • All queries return NDJSON (Newline Delimited JSON) format for efficient streaming

Write Endpoints

  • POST /write?db={database} - Write data using InfluxDB Line Protocol

Administrative Endpoints

  • GET /health - Health check
  • GET /ping - Simple ping

Example Usage

Writing Data

Use InfluxDB Line Protocol format:

curl -X POST "http://localhost:7971/write?db=mydb" --data-binary @/dev/stdin << EOF
weather,location=us-midwest,season=summer temperature=82
weather,location=us-east,season=summer temperature=80
weather,location=us-west,season=summer temperature=99
EOF

Reading Data

Execute SQL queries via JSON POST with NDJSON format:

curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \
  -H "Content-Type: application/json" \
  -d '{"query": "SELECT time, temperature FROM weather WHERE time >= epoch_ns('\''2025-04-24T00:00:00'\''::TIMESTAMP)"}'

Show Databases/Tables

# Show databases
curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \
  -H "Content-Type: application/json" \
  -d '{"query": "SHOW DATABASES"}'

# Show tables  
curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \
  -H "Content-Type: application/json" \
  -d '{"query": "SHOW TABLES"}'

# Count records
curl -X POST "http://localhost:7971/query?db=mydb&format=ndjson" \
  -H "Content-Type: application/json" \
  -d '{"query": "SELECT count(*), avg(temperature) FROM weather"}'

Environment Variables

Required Variables

  • GIGAPI_HOST: The hostname of your GigAPI server
  • GIGAPI_PORT: The port number of your GigAPI server (default: 7971)

Optional Variables

  • GIGAPI_USERNAME or GIGAPI_USER: The username for authentication (if required)
  • GIGAPI_PASSWORD or GIGAPI_PASS: The password for authentication (if required)
  • GIGAPI_TIMEOUT: Request timeout in seconds (default: 30)
  • GIGAPI_VERIFY_SSL: Enable/disable SSL certificate verification (default: true)
  • GIGAPI_DEFAULT_DATABASE: Default database to use for queries (default: mydb)
  • GIGAPI_MCP_SERVER_TRANSPORT: Sets the transport method for the MCP server (default: stdio)
  • GIGAPI_ENABLED: Enable/disable GigAPI functionality (default: true)

Example Configurations

For Local Development

# Required variables
GIGAPI_HOST=localhost
GIGAPI_PORT=7971

# Optional: Override defaults for local development
GIGAPI_VERIFY_SSL=false
GIGAPI_TIMEOUT=60
GIGAPI_DEFAULT_DATABASE=mydb

For Production with Authentication

# Required variables
GIGAPI_HOST=your-gigapi-server
GIGAPI_PORT=7971
GIGAPI_USERNAME=your_username
GIGAPI_PASSWORD=your_password

# Optional: Production settings
GIGAPI_VERIFY_SSL=true
GIGAPI_TIMEOUT=30
GIGAPI_DEFAULT_DATABASE=your_database

For Public Demo

GIGAPI_HOST=gigapi.fly.dev
GIGAPI_PORT=443
GIGAPI_VERIFY_SSL=true
GIGAPI_DEFAULT_DATABASE=mydb

Data Format

GigAPI uses Hive partitioning with the structure:

/data
  /mydb
    /weather
      /date=2025-04-10
        /hour=14
          *.parquet
          metadata.json

Development

Setup Development Environment

  1. Install dependencies:

    uv sync --all-extras --dev
    source .venv/bin/activate
    
  2. Create a .env file in the root of the repository:

    GIGAPI_HOST=localhost
    GIGAPI_PORT=7971
    GIGAPI_USERNAME=your_username
    GIGAPI_PASSWORD=your_password
    GIGAPI_TIMEOUT=30
    GIGAPI_VERIFY_SSL=false
    GIGAPI_DEFAULT_DATABASE=mydb
    
  3. For testing with the MCP Inspector:

    fastmcp dev mcp_gigapi/mcp_server.py
    

Running Tests

# Run all tests
uv run pytest -v

# Run only unit tests
uv run pytest -v -m "not integration"

# Run only integration tests
uv run pytest -v -m "integration"

# Run linting
uv run ruff check .

# Test with public demo
python test_demo.py

Testing with Public Demo

The repository includes a test script that validates the MCP server against the public GigAPI demo:

python test_demo.py

This will test:

  • ✅ Health check and connectivity
  • ✅ Database listing (SHOW DATABASES)
  • ✅ Table listing (SHOW TABLES)
  • ✅ Data queries (SELECT count(*) FROM table)
  • ✅ Sample data retrieval

PyPI Publishing

This package is automatically published to PyPI on each GitHub release. The publishing process is handled by GitHub Actions workflows:

  • CI Workflow (.github/workflows/ci.yml): Runs tests on pull requests and pushes to main
  • Publish Workflow (.github/workflows/publish.yml): Publishes to PyPI when a release is created

For Users

Once published, users can install the package directly from PyPI:

# Install and run the MCP server
uv run --with mcp-gigapi --python 3.11 mcp-gigapi

For Maintainers

To publish a new version:

  1. Update the version in pyproject.toml
  2. Create a GitHub release
  3. The workflow will automatically publish to PyPI

See RELEASING.md for detailed release instructions.

Troubleshooting

Common Issues

  1. Connection refused: Check that GigAPI is running and the host/port are correct
  2. Authentication failed: Verify username/password are correct
  3. SSL certificate errors: Set GIGAPI_VERIFY_SSL=false for self-signed certificates
  4. No databases found: Ensure you're using the correct default database (usually "mydb")

Debug Mode

Enable debug logging by setting the log level:

import logging
logging.basicConfig(level=logging.DEBUG)

License

Apache-2.0 license

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

Support

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured