GeoSight MCP Server

GeoSight MCP Server

Production-ready satellite imagery analysis server that enables natural language queries for Earth observation data, including land cover classification, vegetation monitoring, water detection, change detection, and automated environmental reporting.

Category
Visit Server

README

๐Ÿ›ฐ๏ธ GeoSight MCP Server

Python 3.11+ MCP License: MIT

Production-ready Satellite Imagery Analysis MCP Server - Analyze Earth observation data through natural language queries.

"Show me deforestation in the Amazon over the last year"
"Detect flooding in Bangladesh from satellite imagery"
"Track urban expansion around Mumbai since 2020"


๐ŸŒŸ Features

Feature Description
Land Cover Classification Identify forests, water, urban areas, agriculture
Vegetation Analysis (NDVI) Monitor crop health, deforestation, drought
Water Detection (NDWI) Track floods, reservoirs, coastal changes
Change Detection Compare imagery across time periods
Object Detection Find ships, planes, buildings, solar farms
Automated Reports Generate PDF/HTML reports with maps

๐Ÿ—๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                     CLIENT LAYER                                โ”‚
โ”‚         Claude Desktop / Streamlit Dashboard / API              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ”‚ MCP Protocol (stdio/SSE)
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    MCP SERVER (FastAPI)                         โ”‚
โ”‚    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                โ”‚
โ”‚    โ”‚  Tools   โ”‚    โ”‚  Auth    โ”‚    โ”‚  Queue   โ”‚                โ”‚
โ”‚    โ”‚  Router  โ”‚    โ”‚  Layer   โ”‚    โ”‚ (Celery) โ”‚                โ”‚
โ”‚    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                   PROCESSING ENGINE                             โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”             โ”‚
โ”‚  โ”‚  Imagery    โ”‚  โ”‚  ML Models  โ”‚  โ”‚  Visualize  โ”‚             โ”‚
โ”‚  โ”‚  Fetcher    โ”‚  โ”‚  Pipeline   โ”‚  โ”‚  Engine     โ”‚             โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜             โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ”‚
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                    DATA LAYER                                   โ”‚
โ”‚    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”                โ”‚
โ”‚    โ”‚ Postgres โ”‚    โ”‚  Redis   โ”‚    โ”‚  MinIO   โ”‚                โ”‚
โ”‚    โ”‚ +PostGIS โ”‚    โ”‚  Cache   โ”‚    โ”‚ Storage  โ”‚                โ”‚
โ”‚    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜                โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿš€ Quick Start

Prerequisites

  • Python 3.11+
  • Docker & Docker Compose
  • Sentinel Hub Account (free tier available)

1. Clone & Setup

git clone https://github.com/yourusername/geosight-mcp.git
cd geosight-mcp

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install dependencies
pip install -e ".[dev]"

2. Configure Environment

cp .env.example .env
# Edit .env with your API keys

3. Start Services

# Development mode
docker-compose up -d redis postgres minio

# Run MCP server
python -m geosight.server

# Or run everything with Docker
docker-compose up -d

4. Connect to Claude Desktop

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "geosight": {
      "command": "python",
      "args": ["-m", "geosight.server"],
      "cwd": "/path/to/geosight-mcp",
      "env": {
        "SENTINEL_HUB_CLIENT_ID": "your-client-id",
        "SENTINEL_HUB_CLIENT_SECRET": "your-client-secret"
      }
    }
  }
}

๐Ÿ”ง Available MCP Tools

search_imagery

Find available satellite imagery for a location and date range.

# Example usage through Claude
"Find Sentinel-2 imagery for New Delhi from last month"

calculate_ndvi

Calculate vegetation index to assess plant health.

# Returns: NDVI map + statistics
"Calculate NDVI for agricultural region near Punjab"

calculate_ndwi

Calculate water index to detect water bodies and flooding.

# Returns: Water mask + area calculations
"Show water bodies in Kerala during monsoon season"

detect_land_cover

Classify land into categories: forest, water, urban, agriculture, barren.

# Returns: Classification map + percentages
"Classify land cover for Bangalore metropolitan area"

detect_changes

Compare two time periods and highlight differences.

# Returns: Change map + statistics
"Show construction changes in Dubai between 2020 and 2024"

detect_objects

Find specific objects in imagery (ships, planes, buildings).

# Returns: Detected objects with bounding boxes
"Detect ships in Mumbai harbor"

generate_report

Create comprehensive PDF/HTML report with analysis.

# Returns: Downloadable report
"Generate environmental report for Amazon rainforest region"

๐Ÿ“Š Data Sources

Source Type Resolution Frequency Cost
Sentinel-2 Optical (13 bands) 10m 5 days Free
Sentinel-1 SAR (radar) 10m 6 days Free
Landsat 8/9 Optical + Thermal 30m 16 days Free
MODIS Global coverage 250m-1km Daily Free

๐Ÿง  ML Models

Pre-trained Models Included

  1. Land Cover Classifier - EuroSAT-based CNN (ResNet50)
  2. Change Detection - Siamese U-Net architecture
  3. Object Detection - YOLOv8 trained on DOTA dataset
  4. Segmentation - DeepLabV3+ for semantic segmentation

Model Performance

Model Task Accuracy Inference Time
Land Cover Classification 94.2% ~200ms
Change Detection Binary change 91.8% ~500ms
Object Detection Ships/Planes 87.5% mAP ~300ms

๐Ÿณ Deployment

Docker Deployment

# Build and run all services
docker-compose -f docker-compose.prod.yml up -d

# Check logs
docker-compose logs -f geosight-mcp

Cloud Deployment (Railway/Fly.io)

# Railway
railway up

# Fly.io
fly launch
fly deploy

Kubernetes

kubectl apply -f k8s/

๐Ÿ“ Project Structure

geosight-mcp/
โ”œโ”€โ”€ src/
โ”‚   โ””โ”€โ”€ geosight/
โ”‚       โ”œโ”€โ”€ __init__.py
โ”‚       โ”œโ”€โ”€ server.py           # MCP server entry point
โ”‚       โ”œโ”€โ”€ tools/              # MCP tool implementations
โ”‚       โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚       โ”‚   โ”œโ”€โ”€ imagery.py      # Image search & fetch
โ”‚       โ”‚   โ”œโ”€โ”€ indices.py      # NDVI, NDWI calculations
โ”‚       โ”‚   โ”œโ”€โ”€ classification.py # Land cover classification
โ”‚       โ”‚   โ”œโ”€โ”€ change_detection.py
โ”‚       โ”‚   โ”œโ”€โ”€ object_detection.py
โ”‚       โ”‚   โ””โ”€โ”€ reports.py      # Report generation
โ”‚       โ”œโ”€โ”€ models/             # ML models
โ”‚       โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚       โ”‚   โ”œโ”€โ”€ land_cover.py
โ”‚       โ”‚   โ”œโ”€โ”€ change_detector.py
โ”‚       โ”‚   โ””โ”€โ”€ object_detector.py
โ”‚       โ”œโ”€โ”€ services/           # External service integrations
โ”‚       โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚       โ”‚   โ”œโ”€โ”€ sentinel_hub.py
โ”‚       โ”‚   โ”œโ”€โ”€ earth_engine.py
โ”‚       โ”‚   โ””โ”€โ”€ storage.py
โ”‚       โ””โ”€โ”€ utils/              # Utilities
โ”‚           โ”œโ”€โ”€ __init__.py
โ”‚           โ”œโ”€โ”€ geo.py          # Geospatial utilities
โ”‚           โ”œโ”€โ”€ visualization.py
โ”‚           โ””โ”€โ”€ cache.py
โ”œโ”€โ”€ tests/
โ”œโ”€โ”€ config/
โ”œโ”€โ”€ scripts/
โ”œโ”€โ”€ dashboard/                  # Streamlit dashboard
โ”œโ”€โ”€ docs/
โ”œโ”€โ”€ docker-compose.yml
โ”œโ”€โ”€ Dockerfile
โ”œโ”€โ”€ pyproject.toml
โ””โ”€โ”€ README.md

๐Ÿงช Testing

# Run all tests
pytest

# With coverage
pytest --cov=geosight --cov-report=html

# Integration tests
pytest tests/integration/ -v

๐Ÿ“ˆ Monitoring

  • Prometheus metrics at /metrics
  • Health check at /health
  • Grafana dashboards included in config/grafana/

๐Ÿค Contributing

  1. Fork the repository
  2. Create feature branch (git checkout -b feature/amazing-feature)
  3. Commit changes (git commit -m 'Add amazing feature')
  4. Push to branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

๐Ÿ“„ License

MIT License - see LICENSE for details.


๐Ÿ™ Acknowledgments


๐Ÿ“ฌ Contact

Your Name - @yourtwitter

Project Link: https://github.com/yourusername/geosight-mcp

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured