GenAIScript

GenAIScript

GenAIScript is a JavaScript runtime dedicated to build relaible, automatable LLM scripts. Every GenAIScript can be exposed as a MCP server automatically.

Category
Visit Server

README

A yellow square with the word "gen" in lowercase black letters above the uppercase black letters "AI."

GenAIScript

Prompting is Coding

Programmatically assemble prompts for LLMs using JavaScript. Orchestrate LLMs, tools, and data in code.


Hello world

Say to you want to create an LLM script that generates a 'hello world' poem. You can write the following script:

$`Write a 'hello world' poem.`

The $ function is a template tag that creates a prompt. The prompt is then sent to the LLM (you configured), which generates the poem.

Let's make it more interesting by adding files, data and structured output. Say you want to include a file in the prompt, and then save the output in a file. You can write the following script:

// read files
const file = await workspace.readText("data.txt")
// include the file content in the prompt in a context-friendly way
def("DATA", file)
// the task
$`Analyze DATA and extract data in JSON in data.json.`

The def function includes the content of the file, and optimizes it if necessary for the target LLM. GenAIScript script also parses the LLM output and will extract the data.json file automatically.


🚀 Quickstart Guide

Get started quickly by installing the Visual Studio Code Extension or using the command line.


✨ Features

🎨 Stylized JavaScript & TypeScript

Build prompts programmatically using JavaScript or TypeScript.

def("FILE", env.files, { endsWith: ".pdf" })
$`Summarize FILE. Today is ${new Date()}.`

🚀 Fast Development Loop

Edit, Debug, Run, and Test your scripts in Visual Studio Code or with the command line.


🔗 Reuse and Share Scripts

Scripts are files! They can be versioned, shared, and forked.

// define the context
def("FILE", env.files, { endsWith: ".pdf" })
// structure the data
const schema = defSchema("DATA", { type: "array", items: { type: "string" } })
// assign the task
$`Analyze FILE and extract data to JSON using the ${schema} schema.`

📋 Data Schemas

Define, validate, and repair data using schemas. Zod support builtin.

const data = defSchema("MY_DATA", { type: "array", items: { ... } })
$`Extract data from files using ${data} schema.`

📄 Ingest Text from PDFs, DOCX, ...

Manipulate PDFs, DOCX, ...

def("PDF", env.files, { endsWith: ".pdf" })
const { pages } = await parsers.PDF(env.files[0])

📊 Ingest Tables from CSV, XLSX, ...

Manipulate tabular data from CSV, XLSX, ...

def("DATA", env.files, { endsWith: ".csv", sliceHead: 100 })
const rows = await parsers.CSV(env.files[0])
defData("ROWS", rows, { sliceHead: 100 })

📝 Generate Files

Extract files and diff from the LLM output. Preview changes in Refactoring UI.

$`Save the result in poem.txt.`
FILE ./poem.txt
The quick brown fox jumps over the lazy dog.

🔍 File Search

Grep or fuzz search files.

const { files } = await workspace.grep(/[a-z][a-z0-9]+/, { globs: "*.md" })

Classify

Classify text, images or a mix of all.

const joke = await classify(
    "Why did the chicken cross the roard? To fry in the sun.",
    {
        yes: "funny",
        no: "not funny",
    }
)

LLM Tools

Register JavaScript functions as tools (with fallback for models that don't support tools). Model Context Protocol (MCP) tools are also supported.

defTool(
    "weather",
    "query a weather web api",
    { location: "string" },
    async (args) =>
        await fetch(`https://weather.api.api/?location=${args.location}`)
)

LLM Agents

Register JavaScript functions as tools and combine tools + prompt into agents.

defAgent(
    "git",
    "Query a repository using Git to accomplish tasks.",
    `Your are a helpful LLM agent that can use the git tools to query the current repository.
    Answer the question in QUERY.
    - The current repository is the same as github repository.`,
    { model, system: ["system.github_info"], tools: ["git"] }
)

then use it as a tool

script({ tools: "agent_git" })

$`Do a statistical analysis of the last commits`

See the git agent source.


🔍 RAG Built-in

Vector search.

const { files } = await retrieval.vectorSearch("cats", "**/*.md")

🐙 GitHub Models and GitHub Copilot

Run models through GitHub Models or GitHub Copilot.

script({ ..., model: "github:gpt-4o" })

💻 Local Models

Run your scripts with Open Source models, like Phi-3, using Ollama, LocalAI.

script({ ..., model: "ollama:phi3" })

🐍 Code Interpreter

Let the LLM run code in a sandboxed execution environment.

script({ tools: ["python_code_interpreter"] })

🐳 Containers

Run code in Docker containers.

const c = await host.container({ image: "python:alpine" })
const res = await c.exec("python --version")

Video processing

Transcribe and screenshot your videos so that you can feed them efficiently in your LLMs requests.

// transcribe
const transcript = await transcript("path/to/audio.mp3")
// screenshots at segments
const frames = await ffmpeg.extractFrames("path_url_to_video", { transcript })
def("TRANSCRIPT", transcript)
def("FRAMES", frames)

🧩 LLM Composition

Run LLMs to build your LLM prompts.

for (const file of env.files) {
    const { text } = await runPrompt((_) => {
        _.def("FILE", file)
        _.$`Summarize the FILE.`
    })
    def("SUMMARY", text)
}
$`Summarize all the summaries.`

🅿️ Prompty support

Run your Prompty files as well!

---
name: poem
---

Write me a poem

Pluggable Secret Scanning

Scan your chats for secrets using secret scanning.

{
    "secretPatterns": {
        ...,
        "OpenAI API Key": "sk-[A-Za-z0-9]{32,48}"
    }
}

⚙ Automate with CLI or API

Automate using the CLI or API.

npx genaiscript run tlaplus-linter "*.tla"
import { run } from "genaiscript/api"

const res = await run("tlaplus-linter", "*.tla")

Safety First!

GenAIScript provides built-in Responsible AI system prompts and Azure Content Safety supports to validate content safety.

script({ ...,
    system: ["system.safety_harmful_content", ...],
    contentSafety: "azure" // use azure content safety
})

const safety = await host.contentSafety()
const res = await safety.detectPromptInjection(env.vars.input)

💬 Pull Request Reviews

Integrate into your Pull Requests checks through comments, reviews, or description updates. Supports GitHub Actions and Azure DevOps pipelines.

npx genaiscript ... --pull-request-reviews

⭐ Tests and Evals

Build reliable prompts using tests and evals powered by promptfoo.

script({ ..., tests: {
  files: "penguins.csv",
  rubric: "is a data analysis report",
  facts: "The data refers about penguin population in Antarctica.",
}})

LLM friendly docs

The entire content of the docs is rendered at https://microsoft.github.io/genaiscript/llms-full.txt in markdown. Feed it directly into your favorite RAG system.

If you are an LLM crawler, add the .md suffix to any documentation URLs to get a raw markdown content. For example, https://microsoft.github.io/genaiscript/guides/prompt-as-code.md (note the .md extension)

Contributing

We accept contributions! Checkout the CONTRIBUTING page for details and developer setup.


Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured