Gemini MCP Server
Integrates Google Gemini AI into Warp terminal workflows through three focused tools: single-turn chat for quick questions, multi-turn conversations with context preservation, and AI-powered code analysis with bug detection and optimization suggestions.
README
<div align="center">
<!-- Premium Warp Terminal Hero Banner --> <a href="https://app.warp.dev/referral/4YXPLX" target="_blank" rel="noopener noreferrer"> <img src="./assets/warp-banner.png" alt="Gemini MCP Server for Warp Terminal" width="100%" style="max-width: 1000px; border-radius: 12px;" /> </a>
<br/><br/>
🤖 Gemini MCP Server
Customized for Warp Terminal
Model Context Protocol Server for Google Gemini API
Optimized for Modern Terminal Workflows
<br/>
<!-- Premium Download CTA --> <a href="https://app.warp.dev/referral/4YXPLX" target="_blank" rel="noopener noreferrer"> <img alt="Download Warp Terminal" src="https://img.shields.io/badge/%E2%9A%A1_Download_Warp_Terminal-00E5FF?style=for-the-badge&logo=&logoColor=white" height="36" /> </a>
<p style="margin-top: 10px; font-size: 14px; color: #888;"> <strong>Get Warp Terminal at:</strong> <a href="https://app.warp.dev/referral/4YXPLX" target="_blank" rel="noopener noreferrer" style="color: #00E5FF; text-decoration: none; font-weight: bold;">warp.dev</a> ✨ </p>
<br/>
Seamlessly integrate Google Gemini AI into your Warp terminal workflow
Features • Installation • Configuration • Usage • API Reference • Contributing
</div>
📋 Overview
Gemini MCP Server is a Model Context Protocol implementation that brings Google Gemini's powerful AI capabilities directly into your Warp terminal. Built with enterprise-grade standards, this server enables conversational AI, multi-turn dialogues, and intelligent code analysis through simple, well-defined tools.
Why Use This?
✨ Zero Configuration - Works out of the box with Warp terminal
🔒 Secure by Default - API keys stored in environment variables
⚡ High Performance - Optimized for rapid response times
🎯 Purpose-Built Tools - Three focused tools for maximum utility
🌐 Open Source - MIT licensed, community-driven development
✨ Features
<table> <tr> <td width="33%">
💬 Single-Turn Chat
gemini_chat
Quick, stateless conversations with Gemini. Perfect for one-off questions, code generation, or content creation.
</td> <td width="33%">
🔄 Multi-Turn Conversations
gemini_chat_with_history
Maintain context across multiple exchanges. Build complex dialogues and iterative problem-solving sessions.
</td> <td width="33%">
🔍 Code Analysis
gemini_analyze_code
Deep code review, bug detection, optimization suggestions, and explanations. Supports multiple programming languages.
</td> </tr> </table>
🚀 Installation
Prerequisites
- Node.js ≥ 18.0.0
- npm ≥ 9.0.0
- Warp Terminal (latest version)
- Google Gemini API Key (Get one here)
Quick Start
# Clone or download the repository
git clone https://github.com/bobvasic/gemini-mcp-server.git
cd gemini-mcp-server
# Install dependencies
npm install
# Run automated setup (recommended)
./setup.sh YOUR_GEMINI_API_KEY
Manual Installation
# Install dependencies
npm install
# Make scripts executable
chmod +x index.js setup.sh
⚙️ Configuration
Method 1: Automated Setup (Recommended)
./setup.sh YOUR_GEMINI_API_KEY
This script automatically:
- Creates Warp MCP configuration
- Sets up your API key securely
- Validates the installation
Method 2: Manual Configuration
Step 1: Get Your API Key
- Visit Google AI Studio
- Sign in with your Google account
- Generate a new API key
- Copy the key (keep it secure!)
Step 2: Configure Warp
Create or edit ~/.config/warp/mcp.json:
{
"mcpServers": {
"gemini": {
"command": "node",
"args": ["${HOME}/gemini-mcp-server/index.js"],
"env": {
"GEMINI_API_KEY": "your-actual-api-key-here"
}
}
}
}
⚠️ Security Best Practice: Never commit your API key to version control. Use environment variables for production deployments.
Step 3: Restart Warp
Completely quit and restart Warp terminal for changes to take effect.
💡 Usage
Testing the Server
Verify your installation works:
export GEMINI_API_KEY="your-api-key"
cd gemini-mcp-server
npm start
You should see: Gemini MCP Server running on stdio
Tool Examples
1. Basic Conversation
{
"tool": "gemini_chat",
"arguments": {
"message": "Explain the difference between async/await and Promises in JavaScript",
"temperature": 0.7,
"max_tokens": 2048
}
}
Use Cases:
- Quick questions and answers
- Code generation
- Content writing
- Brainstorming ideas
2. Contextual Dialogue
{
"tool": "gemini_chat_with_history",
"arguments": {
"messages": [
{
"role": "user",
"parts": [{"text": "What is dependency injection?"}]
},
{
"role": "model",
"parts": [{"text": "Dependency injection is a design pattern..."}]
},
{
"role": "user",
"parts": [{"text": "Show me an example in TypeScript"}]
}
],
"temperature": 0.8
}
}
Use Cases:
- Technical tutorials
- Iterative problem-solving
- Learning sessions
- Complex debugging
3. Code Analysis
{
"tool": "gemini_analyze_code",
"arguments": {
"code": "function processUser(data) {\n return data.name.toUpperCase();\n}",
"language": "javascript",
"analysis_type": "bugs"
}
}
Analysis Types:
bugs- Find errors and potential issuesoptimize- Performance and best practicesexplain- Detailed code explanationreview- Comprehensive assessment
📚 API Reference
Tool: gemini_chat
Description: Single-turn conversation with Gemini
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
message |
string | Yes | - | Your prompt or question |
temperature |
number | No | 1.0 | Creativity (0.0-2.0) |
max_tokens |
number | No | 8192 | Maximum response length |
Example Response:
{
"content": [
{
"type": "text",
"text": "Here's a detailed explanation..."
}
]
}
Tool: gemini_chat_with_history
Description: Multi-turn conversation with context preservation
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
messages |
array | Yes | - | Conversation history |
temperature |
number | No | 1.0 | Creativity (0.0-2.0) |
Message Format:
{
role: "user" | "model",
parts: [{ text: string }]
}
Tool: gemini_analyze_code
Description: AI-powered code analysis and review
Parameters:
| Parameter | Type | Required | Default | Description |
|---|---|---|---|---|
code |
string | Yes | - | Code to analyze |
language |
string | No | - | Programming language |
analysis_type |
enum | No | review | bugs, optimize, explain, review |
Supported Languages: JavaScript, TypeScript, Python, Go, Rust, Java, C++, Ruby, PHP, Swift, Kotlin, and more
🔧 Advanced Configuration
Environment Variables
# Required
export GEMINI_API_KEY="your-api-key"
# Optional (for custom deployments)
export MCP_SERVER_PORT="3000" # If running as HTTP server
export LOG_LEVEL="info" # debug, info, warn, error
Model Selection
To use different Gemini models, edit index.js:
const model = genAI.getGenerativeModel({
model: "gemini-2.5-pro", // or "gemini-2.0-flash-exp"
generationConfig: {
temperature: 1.0,
maxOutputTokens: 8192,
},
});
Available Models:
gemini-2.0-flash-exp- Fast, efficient (default)gemini-2.5-pro- Most capable (when available)gemini-pro- Balanced performance
🐛 Troubleshooting
Common Issues
<details> <summary><b>Error: "GEMINI_API_KEY environment variable is required"</b></summary>
Solution:
export GEMINI_API_KEY="your-key"
# Or add to ~/.bashrc or ~/.zshrc for persistence
echo 'export GEMINI_API_KEY="your-key"' >> ~/.bashrc
</details>
<details> <summary><b>Warp doesn't recognize the MCP server</b></summary>
Checklist:
- Verify
~/.config/warp/mcp.jsonexists and is valid JSON - Ensure paths in config use absolute paths or
${HOME} - Completely quit and restart Warp (not just close window)
- Check Warp logs:
Settings → Advanced → View Logs</details>
<details> <summary><b>API calls fail with 403 or 401 errors</b></summary>
Possible causes:
- Invalid API key
- API key not activated
- Billing not enabled on Google Cloud
- Rate limits exceeded
Solution: Verify your API key at Google AI Studio </details>
<details> <summary><b>Server starts but responses are empty</b></summary>
Debug steps:
export GEMINI_API_KEY="your-key"
node index.js 2>&1 | tee debug.log
# Then check debug.log for errors
</details>
🔒 Security
Best Practices
- Never commit API keys - Use environment variables
- Rotate keys regularly - Generate new keys every 90 days
- Use key restrictions - Limit keys to specific APIs in Google Cloud Console
- Monitor usage - Check Google Cloud Console for unexpected activity
- Audit logs - Review MCP server logs periodically
Reporting Security Issues
Please report security vulnerabilities to info@cyberlinksec.com. Do not create public issues for security concerns.
See SECURITY.md for our full security policy.
🤝 Contributing
We welcome contributions! Here's how you can help:
Development Setup
# Clone the repo
git clone https://github.com/bobvasic/gemini-mcp-server.git
cd gemini-mcp-server
# Install dependencies
npm install
# Run in development mode
export GEMINI_API_KEY="your-key"
npm start
Contribution Guidelines
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Code Standards
- Follow existing code style
- Add tests for new features
- Update documentation
- Ensure no hardcoded credentials
- Use meaningful commit messages
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
MIT License - Copyright (c) 2025 Gemini MCP Server Contributors
🙏 Acknowledgments
- Model Context Protocol - MCP specification
- Google AI - Gemini API
- Warp Terminal - Modern terminal platform
- All contributors who helped build this project
📊 Stats & Metrics
- Response Time: < 2s average
- Uptime: 99.9% (dependent on Google API)
- Models Supported: 3+ Gemini variants
- Languages: JavaScript/TypeScript
- MCP Version: 1.0.4
🗺️ Roadmap
- [ ] Add streaming response support
- [ ] Implement token usage tracking
- [ ] Add conversation history persistence
- [ ] Support for image inputs
- [ ] Multi-language documentation
- [ ] Docker container support
- [ ] Health check endpoints
- [ ] Prometheus metrics export
<div align="center">
Built with ❤️ for the developer community
If this project helped you, please ⭐ star the repository!
Documentation • Issues • Discussions
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.