Gemini MCP Server

Gemini MCP Server

Enables multi-turn conversations with Google Gemini AI models, supporting file and image analysis, automatic model selection, deep thinking mode, and Google Search integration through the AIStudioProxyAPI backend.

Category
Visit Server

README

Gemini MCP Server

Python MCP License

A Model Context Protocol (MCP) server that provides Google Gemini AI capabilities to MCP-compatible clients like Claude Desktop and Claude Code.

Overview

This MCP server acts as a bridge between MCP clients and Google Gemini models, enabling:

  • Multi-turn conversations with session management
  • File and image analysis with glob pattern support
  • Automatic model selection based on content length
  • Deep thinking mode with reasoning output
  • Google Search integration for up-to-date information

Prerequisites

1. AIStudioProxyAPI Backend

This MCP server requires AIStudioProxyAPI as the backend service.

# Clone and setup AIStudioProxyAPI
git clone https://github.com/CJackHwang/AIstudioProxyAPI.git
cd AIstudioProxyAPI
poetry install
poetry run python launch_camoufox.py --headless

The API will be available at http://127.0.0.1:2048 by default.

2. uv Package Manager

# Install uv (recommended)
curl -LsSf https://astral.sh/uv/install.sh | sh

Installation

# Clone this repository
git clone https://github.com/YOUR_USERNAME/aistudio-gemini-mcp.git
cd aistudio-gemini-mcp

# Install dependencies
uv sync

Configuration

Environment Variables

Variable Default Description
GEMINI_API_BASE_URL http://127.0.0.1:2048 AIStudioProxyAPI endpoint
GEMINI_API_KEY (empty) Optional API key
GEMINI_PROJECT_ROOT $PWD Root directory for file resolution

Claude Desktop / Claude Code

Add to ~/.claude/mcp.json:

{
  "mcpServers": {
    "gemini": {
      "command": "uv",
      "args": ["run", "--directory", "/path/to/aistudio-gemini-mcp", "python", "server.py"],
      "env": {
        "GEMINI_API_BASE_URL": "http://127.0.0.1:2048"
      }
    }
  }
}

Tools

gemini_chat

Send a message to Google Gemini with optional file attachments.

Parameter Type Required Description
prompt string Yes Message to send (1-100,000 chars)
file list[string] No File paths or glob patterns
session_id string No Session ID ("last" for recent)
model string No Override model selection
system_prompt string No System context
temperature float No Sampling temperature (0.0-2.0)
max_tokens int No Max response tokens
response_format enum No "markdown" or "json"

Examples:

# Simple query
gemini_chat(prompt="Explain quantum computing")

# With file
gemini_chat(prompt="Review this code", file=["main.py"])

# With image
gemini_chat(prompt="Describe this", file=["photo.png"])

# Continue conversation
gemini_chat(prompt="Tell me more", session_id="last")

# Multiple files
gemini_chat(prompt="Analyze", file=["src/**/*.py"])

gemini_list_models

List available Gemini models.

Parameter Type Required Description
filter_text string No Filter models by name
response_format enum No "markdown" or "json"

Model Selection

Auto-selects model based on content length:

Content Size Model
≤ 8,000 chars gemini-3-pro-preview
> 8,000 chars gemini-2.5-pro
Fallback gemini-2.5-flash

Features

Session Management

  • Automatic session creation
  • Use "last" to continue recent conversation
  • LRU eviction (max 50 sessions)

File Support

  • Images: PNG, JPG, JPEG, GIF, WebP, BMP
  • Text: Any text-based file with auto-encoding detection
  • Glob patterns: *.py, src/**/*.ts, etc.

Built-in Capabilities

  • reasoning_effort: high - Deep thinking mode
  • google_search - Web search integration
  • Automatic retry with model fallback

Running Standalone

# Start the MCP server
uv run python server.py

Project Structure

aistudio-gemini-mcp/
├── server.py           # MCP server implementation
├── pyproject.toml      # Project configuration
├── uv.lock             # Dependency lock file
├── README.md           # This file
├── LICENSE             # MIT License
└── mcp_config_example.json

Related Projects

License

MIT License - see LICENSE for details.

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured