Gemini MCP Server
Enables multi-turn conversations with Google Gemini AI models, supporting file and image analysis, automatic model selection, deep thinking mode, and Google Search integration through the AIStudioProxyAPI backend.
README
Gemini MCP Server
A Model Context Protocol (MCP) server that provides Google Gemini AI capabilities to MCP-compatible clients like Claude Desktop and Claude Code.
Overview
This MCP server acts as a bridge between MCP clients and Google Gemini models, enabling:
- Multi-turn conversations with session management
- File and image analysis with glob pattern support
- Automatic model selection based on content length
- Deep thinking mode with reasoning output
- Google Search integration for up-to-date information
Prerequisites
1. AIStudioProxyAPI Backend
This MCP server requires AIStudioProxyAPI as the backend service.
# Clone and setup AIStudioProxyAPI
git clone https://github.com/CJackHwang/AIstudioProxyAPI.git
cd AIstudioProxyAPI
poetry install
poetry run python launch_camoufox.py --headless
The API will be available at http://127.0.0.1:2048 by default.
2. uv Package Manager
# Install uv (recommended)
curl -LsSf https://astral.sh/uv/install.sh | sh
Installation
# Clone this repository
git clone https://github.com/YOUR_USERNAME/aistudio-gemini-mcp.git
cd aistudio-gemini-mcp
# Install dependencies
uv sync
Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
GEMINI_API_BASE_URL |
http://127.0.0.1:2048 |
AIStudioProxyAPI endpoint |
GEMINI_API_KEY |
(empty) | Optional API key |
GEMINI_PROJECT_ROOT |
$PWD |
Root directory for file resolution |
Claude Desktop / Claude Code
Add to ~/.claude/mcp.json:
{
"mcpServers": {
"gemini": {
"command": "uv",
"args": ["run", "--directory", "/path/to/aistudio-gemini-mcp", "python", "server.py"],
"env": {
"GEMINI_API_BASE_URL": "http://127.0.0.1:2048"
}
}
}
}
Tools
gemini_chat
Send a message to Google Gemini with optional file attachments.
| Parameter | Type | Required | Description |
|---|---|---|---|
prompt |
string | Yes | Message to send (1-100,000 chars) |
file |
list[string] | No | File paths or glob patterns |
session_id |
string | No | Session ID ("last" for recent) |
model |
string | No | Override model selection |
system_prompt |
string | No | System context |
temperature |
float | No | Sampling temperature (0.0-2.0) |
max_tokens |
int | No | Max response tokens |
response_format |
enum | No | "markdown" or "json" |
Examples:
# Simple query
gemini_chat(prompt="Explain quantum computing")
# With file
gemini_chat(prompt="Review this code", file=["main.py"])
# With image
gemini_chat(prompt="Describe this", file=["photo.png"])
# Continue conversation
gemini_chat(prompt="Tell me more", session_id="last")
# Multiple files
gemini_chat(prompt="Analyze", file=["src/**/*.py"])
gemini_list_models
List available Gemini models.
| Parameter | Type | Required | Description |
|---|---|---|---|
filter_text |
string | No | Filter models by name |
response_format |
enum | No | "markdown" or "json" |
Model Selection
Auto-selects model based on content length:
| Content Size | Model |
|---|---|
| ≤ 8,000 chars | gemini-3-pro-preview |
| > 8,000 chars | gemini-2.5-pro |
| Fallback | gemini-2.5-flash |
Features
Session Management
- Automatic session creation
- Use
"last"to continue recent conversation - LRU eviction (max 50 sessions)
File Support
- Images: PNG, JPG, JPEG, GIF, WebP, BMP
- Text: Any text-based file with auto-encoding detection
- Glob patterns:
*.py,src/**/*.ts, etc.
Built-in Capabilities
reasoning_effort: high- Deep thinking modegoogle_search- Web search integration- Automatic retry with model fallback
Running Standalone
# Start the MCP server
uv run python server.py
Project Structure
aistudio-gemini-mcp/
├── server.py # MCP server implementation
├── pyproject.toml # Project configuration
├── uv.lock # Dependency lock file
├── README.md # This file
├── LICENSE # MIT License
└── mcp_config_example.json
Related Projects
- AIStudioProxyAPI - Backend API service (required)
- Model Context Protocol - MCP specification
License
MIT License - see LICENSE for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.