Gemini MCP Server
Enables interaction with Google's Gemini AI models including file uploads, conversation management, and batch API processing for large-scale tasks at reduced costs. Supports multiple Gemini models with advanced features like embeddings generation and automated workflow processing.
README
Gemini MCP Server
An MCP Server that provides access to Google's Gemini models with file uploads and Batch API integration.
✨ Features
- Multiple Gemini Models on Request: Gemini 2.5 Pro, 2.5 Flash, 2.0 Flash, and Embedding-001
- 🆕 Batch API Integration (v0.3.0): Async processing at 50% cost with ~24hr turnaround
- 11 batch tools for content generation and embeddings
- Intelligent JSONL conversion (CSV, JSON, TXT, MD)
- Complete workflow automation
- 8 embedding task types with AI recommendations
- Advanced File Handling: Upload and process 40+ files with batch support
- Automatic Configuration: Interactive API key setup for Claude Code & Claude Desktop
- Conversation Management: Multi-turn conversations with history tracking
- Type Safety: Full TypeScript implementation with proper type definitions
- Production Ready: Retry logic, error handling, and file state monitoring
🚀 Quick Start
Option 1: Global Install (Recommended for Claude Code)
# Install globally
npm install -g @mintmcqueen/gemini-mcp
# Add to Claude Code
claude mcp add --transport stdio gemini --scope user --env GEMINI_API_KEY=YOUR_KEY_HERE -- gemini-mcp
Option 2: Local Project Install
# Install in your project
npm install @mintmcqueen/gemini-mcp
# Add to Claude Code (adjust path as needed)
claude mcp add --transport stdio gemini --scope project --env GEMINI_API_KEY=YOUR_KEY_HERE -- node node_modules/@mintmcqueen/gemini-mcp/build/index.js
After any installation method, restart Claude Code and you're ready to use Gemini.
🔑 API Key Setup
Get Your API Key
- Visit Google AI Studio
- Create a new API key (free)
- Copy your key (starts with "AIza...")
Configure Anytime
npm run configure
The configuration wizard will:
- Validate your API key format
- Test the key with a real Gemini API request
- Write configuration to your chosen location(s)
- Provide next steps
📦 What Gets Configured
Claude Code (Global Install)
- File:
~/.claude.json(user scope) - Format: stdio MCP server with environment variables
{
"mcpServers": {
"gemini": {
"type": "stdio",
"command": "gemini-mcp",
"env": {
"GEMINI_API_KEY": "your-key-here"
}
}
}
}
Claude Code (Local Install)
- File:
.mcp.json(project scope) - Format: stdio MCP server with node execution
{
"mcpServers": {
"gemini": {
"type": "stdio",
"command": "node",
"args": ["node_modules/@mintmcqueen/gemini-mcp/build/index.js"],
"env": {
"GEMINI_API_KEY": "your-key-here"
}
}
}
}
Claude Desktop
- File:
~/Library/Application Support/Claude/claude_desktop_config.json(macOS) - Format: Standard MCP server configuration
Shell Environment
- File:
~/.zshrcor~/.bashrc - Format:
export GEMINI_API_KEY="your-key-here"
Usage
MCP Tools
The server provides the following tools:
chat
Send a message to Gemini with optional file attachments.
Parameters:
message(required): The message to sendmodel(optional): Model to use (gemini-2.5-pro, gemini-2.5-flash, gemini-2.5-flash-lite)files(optional): Array of files with base64 encoded datatemperature(optional): Controls randomness (0.0-2.0)maxTokens(optional): Maximum response tokensconversationId(optional): Continue an existing conversation
start_conversation
Start a new conversation session.
Parameters:
id(optional): Custom conversation ID
clear_conversation
Clear a conversation session.
Parameters:
id(required): Conversation ID to clear
🆕 Batch API Tools (v0.3.0)
Process large-scale tasks asynchronously at 50% cost with ~24 hour turnaround.
Content Generation
Simple (Automated):
// One-call solution: Ingest → Upload → Create → Poll → Download
batch_process({
inputFile: "prompts.csv", // CSV, JSON, TXT, or MD
model: "gemini-2.5-flash"
})
// Returns: Complete results with metadata
Advanced (Manual Control):
// 1. Convert your file to JSONL
batch_ingest_content({ inputFile: "prompts.csv" })
// Returns: { outputFile: "prompts.jsonl", requestCount: 100 }
// 2. Upload JSONL
upload_file({ filePath: "prompts.jsonl" })
// Returns: { uri: "files/abc123" }
// 3. Create batch job
batch_create({
inputFileUri: "files/abc123",
model: "gemini-2.5-flash"
})
// Returns: { batchName: "batches/xyz789" }
// 4. Monitor progress
batch_get_status({
batchName: "batches/xyz789",
autoPoll: true // Wait until complete
})
// Returns: { state: "SUCCEEDED", stats: {...} }
// 5. Download results
batch_download_results({ batchName: "batches/xyz789" })
// Returns: { results: [...], outputFile: "results.json" }
Embeddings
Simple (Automated):
// One-call solution with automatic task type prompting
batch_process_embeddings({
inputFile: "documents.txt",
// taskType optional - will prompt if not provided
})
// Returns: 1536-dimensional embeddings array
Advanced (Manual Control):
// 1. Select task type (if unsure)
batch_query_task_type({
context: "Building a search engine"
})
// Returns: { selectedTaskType: "RETRIEVAL_DOCUMENT", recommendation: {...} }
// 2. Ingest content for embeddings
batch_ingest_embeddings({ inputFile: "documents.txt" })
// Returns: { outputFile: "documents.embeddings.jsonl" }
// 3-5. Same as content generation workflow
// 6. Results contain 1536-dimensional vectors
Task Types (8 options):
SEMANTIC_SIMILARITY- Compare text similarityCLASSIFICATION- Categorize contentCLUSTERING- Group similar itemsRETRIEVAL_DOCUMENT- Build search indexesRETRIEVAL_QUERY- Search queriesCODE_RETRIEVAL_QUERY- Code searchQUESTION_ANSWERING- Q&A systemsFACT_VERIFICATION- Fact-checking
Job Management
// Cancel running job
batch_cancel({ batchName: "batches/xyz789" })
// Delete completed job
batch_delete({ batchName: "batches/xyz789" })
Supported Input Formats:
- CSV (converts rows to requests)
- JSON (wraps objects as requests)
- TXT (splits lines as requests)
- MD (markdown sections as requests)
- JSONL (ready to use)
MCP Resources
gemini://models/available
Information about available Gemini models and their capabilities.
gemini://conversations/active
List of active conversation sessions with metadata.
🔧 Development
npm run build # Build TypeScript
npm run watch # Watch mode
npm run dev # Build + auto-restart
npm run inspector # Debug with MCP Inspector
npm run configure # Reconfigure API key
Connection Failures
If Claude Code fails to connect:
- Verify your API key is correct
- Check that the command path is correct (for local installs)
- Restart Claude Code after configuration changes
🔒 Security
- API keys are never logged or echoed
- Files created with 600 permissions (user read/write only)
- Masked input during key entry
- Real API validation before storage
🤝 Contributing
Contributions are welcome! This package is designed to be production-ready with:
- Full TypeScript types
- Comprehensive error handling
- Automatic retry logic
- Real API validation
📄 License
MIT - see LICENSE file
🙋 Support
- MCP Protocol: https://modelcontextprotocol.io
- Gemini API Docs: https://ai.google.dev/docs
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.