Gemini MCP Server

Gemini MCP Server

Enables interaction with Google's Gemini AI models including file uploads, conversation management, and batch API processing for large-scale tasks at reduced costs. Supports multiple Gemini models with advanced features like embeddings generation and automated workflow processing.

Category
Visit Server

README

Gemini MCP Server

An MCP Server that provides access to Google's Gemini models with file uploads and Batch API integration.

✨ Features

  • Multiple Gemini Models on Request: Gemini 2.5 Pro, 2.5 Flash, 2.0 Flash, and Embedding-001
  • 🆕 Batch API Integration (v0.3.0): Async processing at 50% cost with ~24hr turnaround
    • 11 batch tools for content generation and embeddings
    • Intelligent JSONL conversion (CSV, JSON, TXT, MD)
    • Complete workflow automation
    • 8 embedding task types with AI recommendations
  • Advanced File Handling: Upload and process 40+ files with batch support
  • Automatic Configuration: Interactive API key setup for Claude Code & Claude Desktop
  • Conversation Management: Multi-turn conversations with history tracking
  • Type Safety: Full TypeScript implementation with proper type definitions
  • Production Ready: Retry logic, error handling, and file state monitoring

🚀 Quick Start

Option 1: Global Install (Recommended for Claude Code)

# Install globally
npm install -g @mintmcqueen/gemini-mcp

# Add to Claude Code
claude mcp add --transport stdio gemini --scope user --env GEMINI_API_KEY=YOUR_KEY_HERE -- gemini-mcp

Option 2: Local Project Install

# Install in your project
npm install @mintmcqueen/gemini-mcp

# Add to Claude Code (adjust path as needed)
claude mcp add --transport stdio gemini --scope project --env GEMINI_API_KEY=YOUR_KEY_HERE -- node node_modules/@mintmcqueen/gemini-mcp/build/index.js

After any installation method, restart Claude Code and you're ready to use Gemini.

🔑 API Key Setup

Get Your API Key

  1. Visit Google AI Studio
  2. Create a new API key (free)
  3. Copy your key (starts with "AIza...")

Configure Anytime

npm run configure

The configuration wizard will:

  • Validate your API key format
  • Test the key with a real Gemini API request
  • Write configuration to your chosen location(s)
  • Provide next steps

📦 What Gets Configured

Claude Code (Global Install)

  • File: ~/.claude.json (user scope)
  • Format: stdio MCP server with environment variables
{
  "mcpServers": {
    "gemini": {
      "type": "stdio",
      "command": "gemini-mcp",
      "env": {
        "GEMINI_API_KEY": "your-key-here"
      }
    }
  }
}

Claude Code (Local Install)

  • File: .mcp.json (project scope)
  • Format: stdio MCP server with node execution
{
  "mcpServers": {
    "gemini": {
      "type": "stdio",
      "command": "node",
      "args": ["node_modules/@mintmcqueen/gemini-mcp/build/index.js"],
      "env": {
        "GEMINI_API_KEY": "your-key-here"
      }
    }
  }
}

Claude Desktop

  • File: ~/Library/Application Support/Claude/claude_desktop_config.json (macOS)
  • Format: Standard MCP server configuration

Shell Environment

  • File: ~/.zshrc or ~/.bashrc
  • Format: export GEMINI_API_KEY="your-key-here"

Usage

MCP Tools

The server provides the following tools:

chat

Send a message to Gemini with optional file attachments.

Parameters:

  • message (required): The message to send
  • model (optional): Model to use (gemini-2.5-pro, gemini-2.5-flash, gemini-2.5-flash-lite)
  • files (optional): Array of files with base64 encoded data
  • temperature (optional): Controls randomness (0.0-2.0)
  • maxTokens (optional): Maximum response tokens
  • conversationId (optional): Continue an existing conversation

start_conversation

Start a new conversation session.

Parameters:

  • id (optional): Custom conversation ID

clear_conversation

Clear a conversation session.

Parameters:

  • id (required): Conversation ID to clear

🆕 Batch API Tools (v0.3.0)

Process large-scale tasks asynchronously at 50% cost with ~24 hour turnaround.

Content Generation

Simple (Automated):

// One-call solution: Ingest → Upload → Create → Poll → Download
batch_process({
  inputFile: "prompts.csv",  // CSV, JSON, TXT, or MD
  model: "gemini-2.5-flash"
})
// Returns: Complete results with metadata

Advanced (Manual Control):

// 1. Convert your file to JSONL
batch_ingest_content({ inputFile: "prompts.csv" })
// Returns: { outputFile: "prompts.jsonl", requestCount: 100 }

// 2. Upload JSONL
upload_file({ filePath: "prompts.jsonl" })
// Returns: { uri: "files/abc123" }

// 3. Create batch job
batch_create({
  inputFileUri: "files/abc123",
  model: "gemini-2.5-flash"
})
// Returns: { batchName: "batches/xyz789" }

// 4. Monitor progress
batch_get_status({
  batchName: "batches/xyz789",
  autoPoll: true  // Wait until complete
})
// Returns: { state: "SUCCEEDED", stats: {...} }

// 5. Download results
batch_download_results({ batchName: "batches/xyz789" })
// Returns: { results: [...], outputFile: "results.json" }

Embeddings

Simple (Automated):

// One-call solution with automatic task type prompting
batch_process_embeddings({
  inputFile: "documents.txt",
  // taskType optional - will prompt if not provided
})
// Returns: 1536-dimensional embeddings array

Advanced (Manual Control):

// 1. Select task type (if unsure)
batch_query_task_type({
  context: "Building a search engine"
})
// Returns: { selectedTaskType: "RETRIEVAL_DOCUMENT", recommendation: {...} }

// 2. Ingest content for embeddings
batch_ingest_embeddings({ inputFile: "documents.txt" })
// Returns: { outputFile: "documents.embeddings.jsonl" }

// 3-5. Same as content generation workflow
// 6. Results contain 1536-dimensional vectors

Task Types (8 options):

  • SEMANTIC_SIMILARITY - Compare text similarity
  • CLASSIFICATION - Categorize content
  • CLUSTERING - Group similar items
  • RETRIEVAL_DOCUMENT - Build search indexes
  • RETRIEVAL_QUERY - Search queries
  • CODE_RETRIEVAL_QUERY - Code search
  • QUESTION_ANSWERING - Q&A systems
  • FACT_VERIFICATION - Fact-checking

Job Management

// Cancel running job
batch_cancel({ batchName: "batches/xyz789" })

// Delete completed job
batch_delete({ batchName: "batches/xyz789" })

Supported Input Formats:

  • CSV (converts rows to requests)
  • JSON (wraps objects as requests)
  • TXT (splits lines as requests)
  • MD (markdown sections as requests)
  • JSONL (ready to use)

MCP Resources

gemini://models/available

Information about available Gemini models and their capabilities.

gemini://conversations/active

List of active conversation sessions with metadata.

🔧 Development

npm run build        # Build TypeScript
npm run watch        # Watch mode
npm run dev          # Build + auto-restart
npm run inspector    # Debug with MCP Inspector
npm run configure    # Reconfigure API key

Connection Failures

If Claude Code fails to connect:

  1. Verify your API key is correct
  2. Check that the command path is correct (for local installs)
  3. Restart Claude Code after configuration changes

🔒 Security

  • API keys are never logged or echoed
  • Files created with 600 permissions (user read/write only)
  • Masked input during key entry
  • Real API validation before storage

🤝 Contributing

Contributions are welcome! This package is designed to be production-ready with:

  • Full TypeScript types
  • Comprehensive error handling
  • Automatic retry logic
  • Real API validation

📄 License

MIT - see LICENSE file

🙋 Support

  • MCP Protocol: https://modelcontextprotocol.io
  • Gemini API Docs: https://ai.google.dev/docs

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured