Gemini MCP Server
Enables interaction with Google Gemini AI models through MCP protocol. Provides text generation capabilities with configurable model selection and temperature settings.
README
Gemini MCP Server
An MCP (Model Context Protocol) server that provides access to Google Gemini AI models.
Quick Start
- Install dependencies:
npm install
- Create a
.envfile with your Gemini API key:
GEMINI_API_KEY=your_api_key_here
- Start the server:
npm run dev
The server will run at http://localhost:3333/mcp
Available Tool
gemini.generateText
Generate text using Google Gemini models.
Parameters:
prompt(string, required): The text promptmodel(string, optional): Gemini model to use (default:gemini-2.5-pro)temperature(number, optional): Temperature for generation, 0-2 (default: 1)
Returns:
text: Generated text responsemodel: Model usedtemperature: Temperature setting used
Usage Example
import { Client as McpClient } from '@modelcontextprotocol/sdk/client/index.js';
import { StreamableHTTPClientTransport } from '@modelcontextprotocol/sdk/client/streamableHttp.js';
const transport = new StreamableHTTPClientTransport(
new URL('http://localhost:3333/mcp')
);
const client = new McpClient(
{ name: 'my-client', version: '1.0.0' },
{ capabilities: {} }
);
await client.connect(transport);
const result = await client.callTool({
name: 'gemini.generateText',
arguments: {
prompt: 'Explain AI in simple terms',
model: 'gemini-2.5-pro',
temperature: 0.7
}
});
console.log(result);
await client.close();
Testing
Run the included test client (requires server to be running):
npm test
Configuration
Environment variables:
GEMINI_API_KEY(required): Your Google Gemini API keyPORT(optional): Server port (default: 3333)
License
ISC
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.