Gemini Flash Image MCP Server

Gemini Flash Image MCP Server

Enables text-to-image generation, image editing, and multi-image composition using Google's Gemini 2.5 Flash Image API. Supports flexible aspect ratios and character consistency across generations.

Category
Visit Server

README

Gemini Flash Image 2.5 Tool (Nano Banana)

A tool for generating and editing images using Google's Gemini 2.5 Flash Image API (affectionately known as "Nano Banana").

Includes both a Python CLI tool and a Model Context Protocol (MCP) server for integration with AI assistants like Claude Code.

Features

  • Text-to-Image Generation: Create images from text prompts
  • Image Editing: Modify existing images with natural language instructions
  • Multi-Image Composition: Combine multiple images into one
  • Flexible Aspect Ratios: Support for 10 different aspect ratios
  • Character Consistency: Maintain character appearance across multiple generations
  • MCP Server: Integrate with Claude Code and other MCP clients
  • Command-Line Interface: Easy-to-use CLI for quick operations
  • Python API: Use as a library in your own projects

Installation

Option 1: MCP Server (Recommended for AI Assistants)

Simplest Install (using npx)

For Claude Code MCP configuration, you can reference the package directly via GitHub:

Add to your MCP settings (~/.config/claude/claude_desktop_config.json):

{
  "mcpServers": {
    "gemini-image": {
      "command": "npx",
      "args": ["-y", "github:brunoqgalvao/gemini-image-mcp-server"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Then restart Claude Code! The generate_image tool will be available instantly.

Local Install

# Clone the repository
git clone https://github.com/brunoqgalvao/gemini-image-mcp-server.git
cd gemini-image-mcp-server

# Run the installer
./install.sh

The installer will:

  • Install Node.js dependencies
  • Create a .env file from template
  • Run validation tests
  • Show you the MCP configuration to add to Claude Code

Manual Install

  1. Clone or download this repository

  2. Install Node.js dependencies:

npm install
  1. Get your API key from Google AI Studio

  2. Create a .env file in the project directory:

GEMINI_API_KEY=your_api_key_here
  1. Configure your MCP client (e.g., Claude Code):

For macOS/Linux - Add to ~/.config/claude/claude_desktop_config.json:

{
  "mcpServers": {
    "gemini-image": {
      "command": "node",
      "args": ["/absolute/path/to/agent-dispatcher/index.js"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

For Windows - Add to %APPDATA%\Claude\claude_desktop_config.json:

{
  "mcpServers": {
    "gemini-image": {
      "command": "node",
      "args": ["C:\\absolute\\path\\to\\agent-dispatcher\\index.js"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}
  1. Restart Claude Code or your MCP client

Installing on Another Computer

Easiest way - Just use npx! On any computer with Node.js:

Add to Claude Code MCP settings:

{
  "mcpServers": {
    "gemini-image": {
      "command": "npx",
      "args": ["-y", "github:brunoqgalvao/gemini-image-mcp-server"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

No cloning needed! npx will fetch and run it automatically.

Alternative: Local installation

# Clone and install
git clone https://github.com/brunoqgalvao/gemini-image-mcp-server.git
cd gemini-image-mcp-server
./install.sh

Option 2: Python CLI Tool

  1. Clone or download this repository

  2. Install Python dependencies:

pip install -r requirements.txt
  1. Get your API key from Google AI Studio

  2. Create a .env file in the project directory:

GEMINI_API_KEY=your_api_key_here

Usage

MCP Server

Once configured, the generate_image tool will be available in your MCP client:

Parameters:

  • prompt (required): Text description of the image to generate or edits to make
  • output_path (required): Path where the image will be saved (must end in .png)
  • input_images (optional): Array of paths to input images for editing/composition
  • aspect_ratio (optional): One of: 1:1, 2:3, 3:2, 3:4, 4:3, 4:5, 5:4, 9:16, 16:9, 21:9
  • image_only (optional): Set to true for image-only output without text

Example usage in Claude Code:

"Generate a sunset over mountains and save it to sunset.png"

The MCP server will handle the API call and save the image automatically.

Command Line

Basic text-to-image generation:

python gemini_image_tool.py "A cat eating a banana in space" -o cat_banana.png

Edit an existing image:

python gemini_image_tool.py "Remove the background" -i photo.jpg -o edited.png

Compose multiple images:

python gemini_image_tool.py "Combine these into a collage" -i img1.jpg -i img2.jpg -o collage.png

Specify aspect ratio:

python gemini_image_tool.py "A cinematic landscape" -o wide.png --aspect-ratio 21:9

Image-only output (no text response):

python gemini_image_tool.py "A red apple" -o apple.png --image-only

Save full API response:

python gemini_image_tool.py "A sunset" -o sunset.png --save-json response.json

Python API

from gemini_image_tool import GeminiImageTool

# Initialize the tool
tool = GeminiImageTool(api_key="your_api_key_here")

# Generate an image
result = tool.generate_content(
    prompt="A futuristic city at night",
    aspect_ratio="16:9",
    output_path="city.png"
)

# Edit an image
result = tool.generate_content(
    prompt="Make the sky purple",
    input_images=["city.png"],
    output_path="city_purple.png"
)

# Combine multiple images
result = tool.generate_content(
    prompt="Create a before/after comparison",
    input_images=["before.jpg", "after.jpg"],
    aspect_ratio="2:1",
    output_path="comparison.png"
)

Available Aspect Ratios

  • 1:1 - Square (default)
  • 2:3 - Portrait
  • 3:2 - Landscape
  • 3:4 - Portrait
  • 4:3 - Landscape
  • 4:5 - Portrait
  • 5:4 - Landscape
  • 9:16 - Vertical (social media)
  • 16:9 - Widescreen
  • 21:9 - Cinematic

Supported Image Formats

Input: JPG, JPEG, PNG, WebP, GIF Output: PNG

Pricing

As of 2025, Gemini 2.5 Flash Image is priced at:

  • $30.00 per 1 million output tokens
  • Each image = 1290 output tokens
  • Cost per image: ~$0.039

Use Cases

  • E-commerce: Product photography and variations
  • Content Creation: Social media graphics, blog images
  • Marketing: Ad creatives, promotional materials
  • Storytelling: Consistent character illustrations
  • Photo Editing: Background removal, color correction, object removal
  • Design: Logo variations, mockups, concept art

Command-Line Arguments

positional arguments:
  prompt                Text prompt for image generation/editing

optional arguments:
  -h, --help            Show help message
  -i INPUT, --input INPUT
                        Input image file path (can be specified multiple times)
  -o OUTPUT, --output OUTPUT
                        Output image file path (default: output.png)
  -a ASPECT_RATIO, --aspect-ratio ASPECT_RATIO
                        Output aspect ratio (default: 1:1)
  --image-only          Request image-only output (no text response)
  --api-key API_KEY     Google AI API key (or set GEMINI_API_KEY env variable)
  --save-json SAVE_JSON
                        Save full API response to JSON file

Error Handling

The tool includes comprehensive error handling for:

  • Missing API keys
  • Invalid image paths
  • Unsupported image formats
  • Invalid aspect ratios
  • API request failures
  • Network errors

Notes

  • All generated images include a SynthID watermark (added by Google)
  • The model benefits from Gemini's world knowledge for enhanced generation
  • Character consistency works best with clear, descriptive prompts
  • For best results, be specific in your prompts

Documentation

For more information about Gemini 2.5 Flash Image:

License

This tool is provided as-is for use with the Gemini API. See Google's terms of service for API usage restrictions.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured