Gemini DeepSearch MCP

Gemini DeepSearch MCP

An automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research, generating sophisticated queries and producing citation-rich answers.

Category
Visit Server

Tools

deep_search

Perform a deep search on a given query using an advanced web research agent. Args: query: The research question or topic to investigate. effort: The amount of effect for the research, low, medium or hight (default: low). Returns: A dictionary containing the answer to the query and a list of sources used.

README

Gemini DeepSearch MCP

Gemini DeepSearch MCP is an automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research. It generates sophisticated queries, synthesizes information from search results, identifies knowledge gaps, and produces high-quality, citation-rich answers.

Features

  • Automated multi-step research using Gemini models and Google Search
  • FastMCP integration for both HTTP API and stdio deployment
  • Configurable effort levels (low, medium, high) for research depth
  • Citation-rich responses with source tracking
  • LangGraph-powered workflow with state management

Usage

Development Server (HTTP + Studio UI)

Start the LangGraph development server with Studio UI:

make dev

Local MCP Server (stdio)

Start the MCP server with stdio transport for integration with MCP clients:

make local

Testing

Run the test suite:

make test

Test the MCP stdio server:

make test_mcp

Use MCP inspector

make inspect

With Langsmith tracing

GEMINI_API_KEY=AI******* LANGSMITH_API_KEY=ls******* LANGSMITH_TRACING=true make inspect

API

The deep_search tool accepts:

  • query (string): The research question or topic to investigate
  • effort (string): Research effort level - "low", "medium", or "high"
    • Low: 1 query, 1 loop, Flash model
    • Medium: 3 queries, 2 loops, Flash model
    • High: 5 queries, 3 loops, Pro model

Returns:

  • answer: Comprehensive research response with citations
  • sources: List of source URLs used in research

Requirements

  • Python 3.12+
  • GEMINI_API_KEY environment variable

Installation

Install directly using uvx:

uvx install gemini-deepsearch-mcp

Claude Desktop Integration

To use the MCP server with Claude Desktop, add this configuration to your Claude Desktop config file:

macOS

Edit ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "gemini-deepsearch": {
      "command": "uvx",
      "args": ["gemini-deepsearch-mcp"],
      "env": {
        "GEMINI_API_KEY": "your-gemini-api-key-here"
      },
      "timeout": 180000
    }
  }
}

Windows

Edit %APPDATA%/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "gemini-deepsearch": {
      "command": "uvx",
      "args": ["gemini-deepsearch-mcp"],
      "env": {
        "GEMINI_API_KEY": "your-gemini-api-key-here"
      },
      "timeout": 180000
    }
  }
}

Linux

Edit ~/.config/claude/claude_desktop_config.json:

{
  "mcpServers": {
    "gemini-deepsearch": {
      "command": "uvx",
      "args": ["gemini-deepsearch-mcp"],
      "env": {
        "GEMINI_API_KEY": "your-gemini-api-key-here"
      },
      "timeout": 180000
    }
  }
}

Important:

  • Replace your-gemini-api-key-here with your actual Gemini API key
  • Restart Claude Desktop after updating the configuration
  • Set ample timeout to avoid MCP error -32001: Request timed out

Alternative: Local Development Setup

For development or if you prefer to run from source:

{
  "mcpServers": {
    "gemini-deepsearch": {
      "command": "uv",
      "args": ["run", "python", "main.py"],
      "cwd": "/path/to/gemini-deepsearch-mcp",
      "env": {
        "GEMINI_API_KEY": "your-gemini-api-key-here"
      }
    }
  }
}

Replace /path/to/gemini-deepsearch-mcp with the actual absolute path to your project directory.

Once configured, you can use the deep_search tool in Claude Desktop by asking questions like:

  • "Use deep_search to research the latest developments in quantum computing"
  • "Search for information about renewable energy trends with high effort"

Agent Source

The deep search agent is from the Gemini Fullstack LangGraph Quickstart repository.

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured