
Gemini DeepSearch MCP
An automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research, generating sophisticated queries and producing citation-rich answers.
Tools
deep_search
Perform a deep search on a given query using an advanced web research agent. Args: query: The research question or topic to investigate. effort: The amount of effect for the research, low, medium or hight (default: low). Returns: A dictionary containing the answer to the query and a list of sources used.
README
Gemini DeepSearch MCP
Gemini DeepSearch MCP is an automated research agent that leverages Google Gemini models and Google Search to perform deep, multi-step web research. It generates sophisticated queries, synthesizes information from search results, identifies knowledge gaps, and produces high-quality, citation-rich answers.
Features
- Automated multi-step research using Gemini models and Google Search
- FastMCP integration for both HTTP API and stdio deployment
- Configurable effort levels (low, medium, high) for research depth
- Citation-rich responses with source tracking
- LangGraph-powered workflow with state management
Usage
Development Server (HTTP + Studio UI)
Start the LangGraph development server with Studio UI:
make dev
Local MCP Server (stdio)
Start the MCP server with stdio transport for integration with MCP clients:
make local
Testing
Run the test suite:
make test
Test the MCP stdio server:
make test_mcp
Use MCP inspector
make inspect
With Langsmith tracing
GEMINI_API_KEY=AI******* LANGSMITH_API_KEY=ls******* LANGSMITH_TRACING=true make inspect
API
The deep_search
tool accepts:
- query (string): The research question or topic to investigate
- effort (string): Research effort level - "low", "medium", or "high"
- Low: 1 query, 1 loop, Flash model
- Medium: 3 queries, 2 loops, Flash model
- High: 5 queries, 3 loops, Pro model
Returns:
- answer: Comprehensive research response with citations
- sources: List of source URLs used in research
Requirements
- Python 3.12+
GEMINI_API_KEY
environment variable
Installation
Install directly using uvx:
uvx install gemini-deepsearch-mcp
Claude Desktop Integration
To use the MCP server with Claude Desktop, add this configuration to your Claude Desktop config file:
macOS
Edit ~/Library/Application Support/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}
Windows
Edit %APPDATA%/Claude/claude_desktop_config.json
:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}
Linux
Edit ~/.config/claude/claude_desktop_config.json
:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uvx",
"args": ["gemini-deepsearch-mcp"],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
},
"timeout": 180000
}
}
}
Important:
- Replace
your-gemini-api-key-here
with your actual Gemini API key - Restart Claude Desktop after updating the configuration
- Set ample timeout to avoid
MCP error -32001: Request timed out
Alternative: Local Development Setup
For development or if you prefer to run from source:
{
"mcpServers": {
"gemini-deepsearch": {
"command": "uv",
"args": ["run", "python", "main.py"],
"cwd": "/path/to/gemini-deepsearch-mcp",
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
}
}
}
}
Replace /path/to/gemini-deepsearch-mcp
with the actual absolute path to your project directory.
Once configured, you can use the deep_search
tool in Claude Desktop by asking questions like:
- "Use deep_search to research the latest developments in quantum computing"
- "Search for information about renewable energy trends with high effort"
Agent Source
The deep search agent is from the Gemini Fullstack LangGraph Quickstart repository.
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.