Gemini Data Analysis & Research MCP Server

Gemini Data Analysis & Research MCP Server

A Model Context Protocol server leveraging Google's Gemini Flash 2 to analyze datasets, generate research papers, and deliver results via email.

Category
Visit Server

README

Gemini Data Analysis & Research MCP Server

A powerful Model Context Protocol (MCP) server that leverages Google's Gemini Flash 2 AI model for comprehensive data analysis, research paper generation, and automated email delivery. This server provides an integrated solution for analyzing datasets, generating research content, and distributing results directly to stakeholders via email.

🚀 Features

1. Advanced Data Analysis & Reporting (analyze-data)

  • Comprehensive analysis of Excel (.xlsx, .xls) and CSV files
  • Features:
    • Automatic data type detection and parsing
    • Statistical analysis of numeric columns
    • Interactive visualizations using Chart.js
    • AI-powered insights using Gemini Flash 2
    • Detailed HTML reports with interactive plots
    • Direct email delivery of analysis results
    • Basic and detailed analysis modes
    • Customizable output directory
    • Support for large datasets
    • Automatic outlier detection
    • Correlation analysis for numeric columns

2. Research & Email Delivery System (send-email)

  • Professional research paper generation and distribution
  • Features:
    • AI-powered research paper generation
    • Automated email delivery of analysis results
    • Support for multiple content types:
      • Research papers
      • Technical reports
      • Data analysis summaries
      • Business intelligence reports
    • Professional email subject line generation
    • Support for both HTML and plain text content
    • Image attachments with inline display capability
    • Secure SMTP authentication
    • Comprehensive error handling and status reporting
    • Professional email formatting
    • Message delivery tracking
    • Customizable email templates

3. Research & Analysis Generator (generate-thinking)

  • Advanced research and analysis generation
  • Features:
    • Research paper generation
    • Technical documentation writing
    • Data analysis summaries
    • Business intelligence reports
    • Timestamped response saving
    • Customizable output directory
    • Direct email delivery of generated content
    • Professional content creation

📊 Quick Start

Prerequisites

  • Node.js (v16 or higher)
  • TypeScript
  • Claude Desktop
  • Google Gemini API Key
  • SMTP Email Account (for email functionality)

Installation

  1. Clone and setup:
git clone [your-repo-url]
cd gemini-data-analysis-email-generator
npm install
  1. Create .env file:
GEMINI_API_KEY=your_api_key_here
NODEMAILER_EMAIL=your.email@gmail.com
NODEMAILER_PASSWORD=your_app_password_here
  1. Build the project:
npm run build

Claude Desktop Configuration

  1. Create/Edit %AppData%/Claude/claude_desktop_config.json:
{
  "mcpServers": {
    "Gemini Data Analysis": {
      "command": "node",
      "args": ["path/to/gemini-data-analysis-email-generator/dist/index.js"],
      "cwd": "path/to/gemini-data-analysis-email-generator",
      "env": {
        "GEMINI_API_KEY": "your_api_key_here",
        "NODEMAILER_EMAIL": "your.email@gmail.com",
        "NODEMAILER_PASSWORD": "your_app_password_here"
      }
    }
  }
}
  1. Restart Claude Desktop

📊 Using the Tools

Data Analysis with EDA and AI

{
  "name": "analyze-data",
  "arguments": {
    "fileData": "base64_encoded_file_content",
    "fileName": "data.xlsx",
    "analysisType": "detailed",
    "outputDir": "./analysis_results"
  }
}

Email Sending with AI Subject Generation

{
  "name": "send-email",
  "arguments": {
    "to": "recipient@example.com",
    "subjectPrompt": "Create a professional subject line for a business report",
    "text": "Hello! This is the plain text version of our email.",
    "html": "<h1>Hello!</h1><p>This is the <b>HTML</b> version of our email.</p>",
    "images": [
      {
        "name": "chart.png",
        "data": "..."
      }
    ]
  }
}

Thinking Generation

{
  "name": "generate-thinking",
  "arguments": {
    "prompt": "Analyze the market trends for Q1 2024",
    "outputDir": "./thinking_output"
  }
}

📁 Output Structure

output/
├── analysis/
│   ├── plots/
│   │   ├── column1_histogram_[timestamp].html
│   │   └── column2_histogram_[timestamp].html
│   ├── analysis_[timestamp].txt
│   └── report_[timestamp].html
├── thinking/
│   └── gemini_thinking_[timestamp].txt
└── emails/
    └── email_log_[timestamp].txt

🛠️ Development

Available Scripts

  • npm run build: Compile TypeScript to JavaScript
  • npm run start: Start the MCP server
  • npm run dev: Run in development mode with ts-node

Environment Variables

  • GEMINI_API_KEY: Your Google Gemini API key
  • NODEMAILER_EMAIL: Your email address for sending emails
  • NODEMAILER_PASSWORD: Your email app password (for Gmail, use an app password)

🔒 Security Notes

  • Store your API keys securely
  • Don't share your .env file
  • For Gmail, use app passwords instead of your main account password
  • Be careful with the content of emails sent through the system
  • Never include sensitive or personal information in email examples

🐛 Troubleshooting

Common Issues

  1. API Key Error

    • Verify .env file exists
    • Check API key validity
    • Ensure proper environment loading
  2. Claude Desktop Connection

    • Verify config.json syntax
    • Check file paths in config
    • Restart Claude Desktop
  3. Email Sending Issues

    • Check that NODEMAILER_EMAIL and NODEMAILER_PASSWORD are set correctly
    • For Gmail, ensure you've created an app password
    • Verify that less secure app access is enabled for non-Gmail providers
    • Check recipient email address format
  4. Data Analysis Issues

    • Ensure file format is supported (.xlsx, .xls, .csv)
    • Check file encoding (UTF-8 recommended)
    • Verify file size is within limits
    • Ensure numeric columns are properly formatted

Debug Mode

Add DEBUG=true to your .env file for verbose logging:

GEMINI_API_KEY=your_key_here
DEBUG=true

📚 API Reference

Data Analysis Tool

interface AnalyzeDataParams {
  fileData: string;         // Base64 encoded file content
  fileName: string;         // File name (must be .xlsx, .xls, or .csv)
  analysisType: 'basic' | 'detailed';  // Analysis type
  outputDir?: string;      // Optional output directory
}

Email Sending Tool

interface SendEmailParams {
  to: string;              // Recipient email address
  subjectPrompt: string;   // Prompt for Gemini to generate email subject
  text: string;            // Plain text version of email
  html?: string;           // HTML version of email (optional)
  images?: {               // Optional images to attach
    name: string;          // Image filename
    data: string;          // Base64 encoded image data
  }[];
}

Thinking Generation Tool

interface GenerateThinkingParams {
  prompt: string;           // Analysis prompt
  outputDir?: string;       // Optional output directory
}

👨‍💻 Author

Falah G. Salieh
📍 Baghdad, Iraq
📅 2025

🤝 Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

📄 License

MIT License - See LICENSE file for details

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured