gemini-bridge

gemini-bridge

A lightweight MCP server bridging AI agents to Google's Gemini AI via official CLI

Category
Visit Server

README

Gemini Bridge

CI Status PyPI Version MIT License Python 3.10+ MCP Compatible Gemini CLI

A lightweight MCP (Model Context Protocol) server that enables AI coding assistants to interact with Google's Gemini AI through the official CLI. Works with Claude Code, Cursor, VS Code, and other MCP-compatible clients. Designed for simplicity, reliability, and seamless integration.

✨ Features

  • Direct Gemini CLI Integration: Zero API costs using official Gemini CLI
  • Simple MCP Tools: Two core functions for basic queries and file analysis
  • Stateless Operation: No sessions, caching, or complex state management
  • Production Ready: Robust error handling with configurable 60-second timeouts
  • Minimal Dependencies: Only requires mcp>=1.0.0 and Gemini CLI
  • Easy Deployment: Support for both uvx and traditional pip installation
  • Universal MCP Compatibility: Works with any MCP-compatible AI coding assistant

🚀 Quick Start

Prerequisites

  1. Install Gemini CLI:

    npm install -g @google/gemini-cli
    
  2. Authenticate with Gemini:

    gemini auth login
    
  3. Verify installation:

    gemini --version
    

Installation

🎯 Recommended: PyPI Installation

# Install from PyPI
pip install gemini-bridge

# Add to Claude Code with uvx (recommended)
claude mcp add gemini-bridge -s user -- uvx gemini-bridge

Alternative: From Source

# Clone the repository
git clone https://github.com/shelakh/gemini-bridge.git
cd gemini-bridge

# Build and install locally
uvx --from build pyproject-build
pip install dist/*.whl

# Add to Claude Code
claude mcp add gemini-bridge -s user -- uvx gemini-bridge

Development Installation

# Clone and install in development mode
git clone https://github.com/shelakh/gemini-bridge.git
cd gemini-bridge
pip install -e .

# Add to Claude Code (development)
claude mcp add gemini-bridge-dev -s user -- python -m src

🌐 Multi-Client Support

Gemini Bridge works with any MCP-compatible AI coding assistant - the same server supports multiple clients through different configuration methods.

Supported MCP Clients

  • Claude Code ✅ (Default)
  • Cursor
  • VS Code
  • Windsurf
  • Cline
  • Void
  • Cherry Studio
  • Augment
  • Roo Code
  • Zencoder
  • Any MCP-compatible client

Configuration Examples

<details> <summary><strong>Claude Code</strong> (Default)</summary>

# Recommended installation
claude mcp add gemini-bridge -s user -- uvx gemini-bridge

# Development installation
claude mcp add gemini-bridge-dev -s user -- python -m src

</details>

<details> <summary><strong>Cursor</strong></summary>

Global Configuration (~/.cursor/mcp.json):

{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {}
    }
  }
}

Project-Specific (.cursor/mcp.json in your project):

{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {}
    }
  }
}

Go to: SettingsCursor SettingsMCPAdd new global MCP server

</details>

<details> <summary><strong>VS Code</strong></summary>

Configuration (.vscode/mcp.json in your workspace):

{
  "servers": {
    "gemini-bridge": {
      "type": "stdio",
      "command": "uvx",
      "args": ["gemini-bridge"]
    }
  }
}

Alternative: Through Extensions

  1. Open Extensions view (Ctrl+Shift+X)
  2. Search for MCP extensions
  3. Add custom server with command: uvx gemini-bridge

</details>

<details> <summary><strong>Windsurf</strong></summary>

Add to your Windsurf MCP configuration:

{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {}
    }
  }
}

</details>

<details> <summary><strong>Cline</strong> (VS Code Extension)</summary>

  1. Open Cline and click MCP Servers in the top navigation
  2. Select Installed tab → Advanced MCP Settings
  3. Add to cline_mcp_settings.json:
{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {}
    }
  }
}

</details>

<details> <summary><strong>Void</strong></summary>

Go to: SettingsMCPAdd MCP Server

{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {}
    }
  }
}

</details>

<details> <summary><strong>Cherry Studio</strong></summary>

  1. Navigate to Settings → MCP Servers → Add Server
  2. Fill in the server details:
    • Name: gemini-bridge
    • Type: STDIO
    • Command: uvx
    • Arguments: ["gemini-bridge"]
  3. Save the configuration

</details>

<details> <summary><strong>Augment</strong></summary>

Using the UI:

  1. Click hamburger menu → SettingsTools
  2. Click + Add MCP button
  3. Enter command: uvx gemini-bridge
  4. Name: Gemini Bridge

Manual Configuration:

"augment.advanced": { 
  "mcpServers": [ 
    { 
      "name": "gemini-bridge", 
      "command": "uvx", 
      "args": ["gemini-bridge"],
      "env": {}
    }
  ]
}

</details>

<details> <summary><strong>Roo Code</strong></summary>

  1. Go to Settings → MCP Servers → Edit Global Config
  2. Add to mcp_settings.json:
{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {}
    }
  }
}

</details>

<details> <summary><strong>Zencoder</strong></summary>

  1. Go to Zencoder menu (...) → ToolsAdd Custom MCP
  2. Add configuration:
{
  "command": "uvx",
  "args": ["gemini-bridge"],
  "env": {}
}
  1. Hit the Install button

</details>

<details> <summary><strong>Alternative Installation Methods</strong></summary>

For pip-based installations:

{
  "command": "gemini-bridge",
  "args": [],
  "env": {}
}

For development/local testing:

{
  "command": "python",
  "args": ["-m", "src"],
  "env": {},
  "cwd": "/path/to/gemini-bridge"
}

For npm-style installation (if needed):

{
  "command": "npx",
  "args": ["gemini-bridge"],
  "env": {}
}

</details>

Universal Usage

Once configured with any client, use the same two tools:

  1. Ask general questions: "What authentication patterns are used in this codebase?"
  2. Analyze specific files: "Review these auth files for security issues"

The server implementation is identical - only the client configuration differs!

⚙️ Configuration

Timeout Configuration

By default, Gemini Bridge uses a 60-second timeout for all CLI operations. For longer queries (large files, complex analysis), you can configure a custom timeout using the GEMINI_BRIDGE_TIMEOUT environment variable.

Example configurations:

<details> <summary><strong>Claude Code</strong></summary>

# Add with custom timeout (120 seconds)
claude mcp add gemini-bridge -s user --env GEMINI_BRIDGE_TIMEOUT=120 -- uvx gemini-bridge

</details>

<details> <summary><strong>Manual Configuration (mcp_settings.json)</strong></summary>

{
  "mcpServers": {
    "gemini-bridge": {
      "command": "uvx",
      "args": ["gemini-bridge"],
      "env": {
        "GEMINI_BRIDGE_TIMEOUT": "120"
      }
    }
  }
}

</details>

Timeout Options:

  • Default: 60 seconds (if not configured)
  • Range: Any positive integer (seconds)
  • Recommended: 120-300 seconds for large file analysis
  • Invalid values: Fall back to 60 seconds with warning

🛠️ Available Tools

consult_gemini

Direct CLI bridge for simple queries.

Parameters:

  • query (string): The question or prompt to send to Gemini
  • directory (string): Working directory for the query (default: current directory)
  • model (string, optional): Model to use - "flash" or "pro" (default: "flash")

Example:

consult_gemini(
    query="Find authentication patterns in this codebase",
    directory="/path/to/project",
    model="flash"
)

consult_gemini_with_files

CLI bridge with file attachments for detailed analysis.

Parameters:

  • query (string): The question or prompt to send to Gemini
  • directory (string): Working directory for the query
  • files (list): List of file paths relative to the directory
  • model (string, optional): Model to use - "flash" or "pro" (default: "flash")

Example:

consult_gemini_with_files(
    query="Analyze these auth files and suggest improvements",
    directory="/path/to/project",
    files=["src/auth.py", "src/models.py"],
    model="pro"
)

📋 Usage Examples

Basic Code Analysis

# Simple research query
consult_gemini(
    query="What authentication patterns are used in this project?",
    directory="/Users/dev/my-project"
)

Detailed File Review

# Analyze specific files
consult_gemini_with_files(
    query="Review these files and suggest security improvements",
    directory="/Users/dev/my-project",
    files=["src/auth.py", "src/middleware.py"],
    model="pro"
)

Multi-file Analysis

# Compare multiple implementation files
consult_gemini_with_files(
    query="Compare these database implementations and recommend the best approach",
    directory="/Users/dev/my-project",
    files=["src/db/postgres.py", "src/db/sqlite.py", "src/db/redis.py"]
)

🏗️ Architecture

Core Design

  • CLI-First: Direct subprocess calls to gemini command
  • Stateless: Each tool call is independent with no session state
  • Fixed Timeout: 60-second maximum execution time
  • Simple Error Handling: Clear error messages with fail-fast approach

Project Structure

gemini-bridge/
├── src/
│   ├── __init__.py              # Entry point
│   ├── __main__.py              # Module execution entry point
│   └── mcp_server.py            # Main MCP server implementation
├── .github/                     # GitHub templates and workflows
├── pyproject.toml              # Python package configuration
├── README.md                   # This file
├── CONTRIBUTING.md             # Contribution guidelines
├── CODE_OF_CONDUCT.md          # Community standards
├── SECURITY.md                 # Security policies
├── CHANGELOG.md               # Version history
└── LICENSE                    # MIT license

🔧 Development

Local Testing

# Install in development mode
pip install -e .

# Run directly
python -m src

# Test CLI availability
gemini --version

Integration with Claude Code

The server automatically integrates with Claude Code when properly configured through the MCP protocol.

🔍 Troubleshooting

CLI Not Available

# Install Gemini CLI
npm install -g @google/gemini-cli

# Authenticate
gemini auth login

# Test
gemini --version

Connection Issues

  • Verify Gemini CLI is properly authenticated
  • Check network connectivity
  • Ensure Claude Code MCP configuration is correct
  • Check that the gemini command is in your PATH

Common Error Messages

  • "CLI not available": Gemini CLI is not installed or not in PATH
  • "Authentication required": Run gemini auth login
  • "Timeout after 60 seconds": Query took too long, try breaking it into smaller parts

🤝 Contributing

We welcome contributions from the community! Please read our Contributing Guidelines for details on how to get started.

Quick Contributing Guide

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🔄 Version History

See CHANGELOG.md for detailed version history.

🆘 Support

  • Issues: Report bugs or request features via GitHub Issues
  • Discussions: Join the community discussion
  • Documentation: Additional docs can be created in the docs/ directory

Focus: A simple, reliable bridge between Claude Code and Gemini AI through the official CLI.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured