Fusion 360 MCP

Fusion 360 MCP

Enables AI-powered parametric CAD design in Autodesk Fusion 360 through natural language commands. Supports multiple AI backends (Ollama, OpenAI, Gemini, Claude) with intelligent routing and safety validation for geometric operations.

Category
Visit Server

README

Fusion 360 MCP - Multi-Model AI Integration

FusionMCP is a comprehensive Model Context Protocol (MCP) integration layer that connects Autodesk Fusion 360 with multiple AI backends (Ollama, OpenAI, Google Gemini, and Anthropic Claude) to enable AI-powered parametric CAD design through natural language.

Version Python Fusion 360 License

🎯 Features

  • πŸ€– Multi-Model Support: Seamlessly switch between Ollama, OpenAI GPT-4o, Google Gemini, and Claude 3.5
  • πŸ”„ Intelligent Routing: Automatic fallback chain when primary model fails
  • πŸ“ Parametric Design: AI understands and generates parametric CAD operations
  • πŸ›‘οΈ Safety First: Built-in validation for dimensions, units, and geometric feasibility
  • πŸ’Ύ Context Caching: Conversation and design state persistence (JSON/SQLite)
  • 🎨 Fusion 360 Integration: Native add-in for seamless workflow
  • ⚑ Async Architecture: Fast, non-blocking operations with retry logic
  • πŸ“Š Structured Logging: Detailed logs with Loguru

πŸ“‹ Table of Contents

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                     Fusion 360 User                         β”‚
β”‚                           ↓                                 β”‚
β”‚              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                    β”‚
β”‚              β”‚  Fusion 360 Add-in      β”‚                    β”‚
β”‚              β”‚  - UI Dialog            β”‚                    β”‚
β”‚              β”‚  - Action Executor      β”‚                    β”‚
β”‚              β”‚  - Network Client       β”‚                    β”‚
β”‚              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                    β”‚
β”‚                         ↓ HTTP/REST                         β”‚
β”‚              β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”                    β”‚
β”‚              β”‚   MCP Server (FastAPI)  β”‚                    β”‚
β”‚              β”‚  - Router               β”‚                    β”‚
β”‚              β”‚  - Schema Validation    β”‚                    β”‚
β”‚              β”‚  - Context Cache        β”‚                    β”‚
β”‚              β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜                    β”‚
β”‚                         ↓                                    β”‚
β”‚         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”               β”‚
β”‚         ↓               ↓           ↓       ↓               β”‚
β”‚   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”     β”‚
β”‚   β”‚ Ollama  β”‚   β”‚  OpenAI  β”‚  β”‚ Gemini β”‚  β”‚  Claude  β”‚     β”‚
β”‚   β”‚ (Local) β”‚   β”‚   API    β”‚  β”‚  API   β”‚  β”‚   API    β”‚     β”‚
β”‚   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜     β”‚
β”‚                                                              β”‚
β”‚              System Prompt (FusionMCP Personality)          β”‚
β”‚              ↓                                              β”‚
β”‚         Structured JSON Actions β†’ Fusion 360                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Component Overview

  1. Fusion 360 Add-in (fusion_addin/)

    • Python-based Fusion 360 add-in
    • Captures user intent and design context
    • Executes structured CAD actions
    • Real-time UI feedback
  2. MCP Server (mcp_server/)

    • FastAPI-based REST server
    • Routes requests to appropriate LLM
    • Validates and normalizes responses
    • Caches conversation history
  3. LLM Clients (mcp_server/llm_clients/)

    • Unified interface for all models
    • Provider-specific implementations
    • Automatic retry and error handling
  4. System Prompt (prompts/system_prompt.md)

    • Defines FusionMCP personality
    • Enforces JSON output format
    • Provides action schema templates

πŸš€ Installation

Prerequisites

Step 1: Clone Repository

git clone https://github.com/yourusername/fusion360-mcp.git
cd fusion360-mcp

Step 2: Install Python Dependencies

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Or install in development mode
pip install -e .

Step 3: Configure Environment

Create config.json from example:

cp examples/example_config.json config.json

Edit config.json with your API keys:

{
  "ollama_url": "http://localhost:11434",
  "openai_api_key": "sk-proj-...",
  "gemini_api_key": "AIza...",
  "claude_api_key": "sk-ant-...",
  "default_model": "openai:gpt-4o-mini",
  "mcp_host": "127.0.0.1",
  "mcp_port": 9000
}

Alternative: Use environment variables (.env file):

OPENAI_API_KEY=sk-proj-...
GEMINI_API_KEY=AIza...
CLAUDE_API_KEY=sk-ant-...

Step 4: Install Fusion 360 Add-in

  1. Copy fusion_addin/ folder to Fusion 360 add-ins directory:

    • Windows: %APPDATA%\Autodesk\Autodesk Fusion 360\API\AddIns\
    • macOS: ~/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/
  2. Rename to FusionMCP:

    cp -r fusion_addin "/Users/YOUR_USER/Library/Application Support/Autodesk/Autodesk Fusion 360/API/AddIns/FusionMCP"
    
  3. Restart Fusion 360

  4. Open Fusion 360 β†’ Scripts and Add-Ins β†’ Add-Ins tab β†’ Select FusionMCP β†’ Run

🎬 Quick Start

1. Start MCP Server

# Activate virtual environment
source venv/bin/activate

# Start server
python -m mcp_server.server

Expected output:

INFO     | Logger initialized with level INFO
INFO     | Cache initialized: json
INFO     | System prompt loaded
INFO     | Initialized MCP Router with providers: ['ollama', 'openai', 'gemini', 'claude']
INFO     | MCP Server started on 127.0.0.1:9000

2. Test Server (Optional)

curl -X POST http://127.0.0.1:9000/mcp/command \
  -H "Content-Type: application/json" \
  -d '{
    "command": "ask_model",
    "params": {
      "provider": "openai",
      "model": "gpt-4o-mini",
      "prompt": "Create a 20mm cube"
    },
    "context": {
      "active_component": "RootComponent",
      "units": "mm",
      "design_state": "empty"
    }
  }'

3. Use in Fusion 360

  1. Open Fusion 360
  2. Click Scripts and Add-Ins β†’ Add-Ins β†’ FusionMCP β†’ Run
  3. Click MCP Assistant button in toolbar
  4. Enter natural language command:
    • "Create a 20mm cube"
    • "Design a mounting bracket with 4 holes"
    • "Make a cylindrical shaft 10mm diameter, 50mm long"

βš™οΈ Configuration

Full Configuration Options

{
  // API Configuration
  "ollama_url": "http://localhost:11434",
  "openai_api_key": "sk-proj-...",
  "gemini_api_key": "AIza...",
  "claude_api_key": "sk-ant-...",

  // Model Selection
  "default_model": "openai:gpt-4o-mini",
  "fallback_chain": [
    "openai:gpt-4o-mini",
    "gemini:gemini-1.5-flash-latest",
    "ollama:llama3"
  ],

  // Server Settings
  "mcp_host": "127.0.0.1",
  "mcp_port": 9000,
  "allow_remote": false,

  // Logging
  "log_level": "INFO",
  "log_dir": "logs",

  // Caching
  "cache_enabled": true,
  "cache_type": "json",  // or "sqlite"
  "cache_path": "context_cache.json",

  // Timeouts and Retries
  "timeout_seconds": 30,
  "max_retries": 3,
  "retry_delay": 1.0,

  // Available Models
  "models": {
    "ollama": {
      "available": ["llama3", "mistral", "codellama"],
      "default": "llama3"
    },
    "openai": {
      "available": ["gpt-4o", "gpt-4o-mini", "gpt-4-turbo"],
      "default": "gpt-4o-mini"
    },
    "gemini": {
      "available": ["gemini-1.5-pro-latest", "gemini-1.5-flash-latest"],
      "default": "gemini-1.5-flash-latest"
    },
    "claude": {
      "available": ["claude-3-5-sonnet-20241022"],
      "default": "claude-3-5-sonnet-20241022"
    }
  }
}

πŸ’‘ Usage Examples

Example 1: Simple Geometry

Prompt: "Create a 20mm cube"

Generated Action:

{
  "action": "create_box",
  "params": {
    "width": 20,
    "height": 20,
    "depth": 20,
    "unit": "mm"
  },
  "explanation": "Creating a 20mm cubic box",
  "safety_checks": ["dimensions_positive", "units_valid"]
}

Example 2: Complex Design

Prompt: "Design a mounting bracket 100x50mm with 4 M5 mounting holes"

Generated Action Sequence:

{
  "actions": [
    {
      "action": "create_box",
      "params": {"width": 100, "height": 50, "depth": 5, "unit": "mm"},
      "explanation": "Create base plate"
    },
    {
      "action": "create_hole",
      "params": {"diameter": 5.5, "position": {"x": 10, "y": 10}, "unit": "mm"},
      "explanation": "M5 clearance hole (10mm edge offset)"
    },
    // ... 3 more holes
  ],
  "total_steps": 5
}

Example 3: Parametric Design

Prompt: "Create a shaft with diameter 2x of length"

{
  "clarifying_questions": [
    {
      "question": "What is the shaft length?",
      "context": "Need length to calculate diameter (diameter = 2 Γ— length)",
      "suggestions": ["50mm", "100mm", "Custom"]
    }
  ]
}

πŸ“‘ API Reference

Endpoints

POST /mcp/command

Execute MCP command.

Request Body:

{
  "command": "ask_model",
  "params": {
    "provider": "openai",
    "model": "gpt-4o-mini",
    "prompt": "User prompt here",
    "temperature": 0.7,
    "max_tokens": 2000
  },
  "context": {
    "active_component": "RootComponent",
    "units": "mm",
    "design_state": "empty"
  }
}

Response:

{
  "status": "success",
  "message": "Action generated successfully",
  "actions_to_execute": [...],
  "llm_response": {...}
}

GET /health

Health check.

Response:

{
  "status": "healthy",
  "providers": ["ollama", "openai", "gemini", "claude"],
  "cache_enabled": true
}

GET /models

List available models.

Response:

{
  "models": {
    "ollama": ["llama3", "mistral"],
    "openai": ["gpt-4o", "gpt-4o-mini"],
    "gemini": ["gemini-1.5-pro-latest"],
    "claude": ["claude-3-5-sonnet-20241022"]
  }
}

GET /history?limit=10

Get conversation history.

Response:

{
  "conversations": [...],
  "actions": [...]
}

Supported Actions

Action Description Required Params
create_box Create rectangular box width, height, depth, unit
create_cylinder Create cylinder radius, height, unit
create_sphere Create sphere radius, unit
create_hole Create hole diameter, position, unit
extrude Extrude profile profile, distance, unit
fillet Round edges edges, radius, unit
apply_material Apply material material_name

πŸ”¬ Model Comparison

Feature Ollama (Local) OpenAI GPT-4o Google Gemini Claude 3.5
Cost Free $$ $ $$$
Speed Fast Medium Fast Medium
Offline βœ… Yes ❌ No ❌ No ❌ No
JSON Mode Limited βœ… Native Good Good
Reasoning Good Excellent Very Good Excellent
Geometry Good Very Good Excellent Very Good
Creative Good Excellent Very Good Good
Best For Privacy, Offline Creative designs Spatial reasoning Safety validation

Recommended Workflows

  1. Creative Design: OpenAI GPT-4o β†’ Claude (validation)
  2. Geometric Precision: Gemini β†’ OpenAI
  3. Privacy-First: Ollama (all tasks)
  4. Cost-Optimized: Gemini Flash β†’ Ollama (fallback)

πŸ› οΈ Development

Project Structure

fusion360-mcp/
β”œβ”€β”€ mcp_server/                 # MCP Server
β”‚   β”œβ”€β”€ server.py              # FastAPI app
β”‚   β”œβ”€β”€ router.py              # Request routing
β”‚   β”œβ”€β”€ schema/                # Pydantic models
β”‚   β”œβ”€β”€ llm_clients/           # LLM implementations
β”‚   └── utils/                 # Utilities
β”œβ”€β”€ fusion_addin/              # Fusion 360 Add-in
β”‚   β”œβ”€β”€ main.py                # Entry point
β”‚   β”œβ”€β”€ ui_dialog.py           # UI components
β”‚   β”œβ”€β”€ fusion_actions.py      # Action executor
β”‚   └── utils/network.py       # Network client
β”œβ”€β”€ prompts/                   # System prompts
β”œβ”€β”€ examples/                  # Example configs
β”œβ”€β”€ tests/                     # Test suite
β”œβ”€β”€ requirements.txt           # Dependencies
└── README.md                  # This file

Running Tests

# Run all tests
pytest tests/ -v

# Run specific test file
pytest tests/test_mcp_server.py -v

# Run with coverage
pytest tests/ --cov=mcp_server --cov-report=html

Adding New LLM Provider

  1. Create client in mcp_server/llm_clients/new_provider_client.py:
class NewProviderClient:
    async def generate(self, model, prompt, system_prompt, temperature, max_tokens):
        # Implementation
        return {
            "provider": "new_provider",
            "model": model,
            "output": "...",
            "json": {...},
            "tokens_used": 123
        }
  1. Register in router.py:
if config.new_provider_api_key:
    self.clients["new_provider"] = NewProviderClient(...)

Code Style

  • PEP8 compliant
  • Type annotations required
  • Docstrings for all functions/classes
  • Async/await for I/O operations

πŸ› Troubleshooting

Common Issues

1. Server Won't Start

Error: Address already in use

Solution: Change port in config.json:

{"mcp_port": 9001}

2. Fusion Add-in Not Visible

Solution:

  • Verify add-in is in correct folder
  • Check FusionMCP.manifest exists
  • Restart Fusion 360
  • Check Scripts and Add-Ins β†’ Add-Ins tab

3. API Key Errors

Error: 401 Unauthorized

Solution:

  • Verify API key in config.json
  • Check key has proper permissions
  • Try environment variables instead

4. Ollama Connection Failed

Error: Connection refused

Solution:

# Check Ollama is running
ollama list

# Start Ollama service
ollama serve

5. JSON Parsing Errors

Solution:

  • Check system prompt is loaded
  • Verify model supports JSON mode
  • Use temperature < 0.8 for better structure
  • Enable json_mode=True in OpenAI client

Debug Mode

Enable verbose logging:

{"log_level": "DEBUG"}

Check logs in logs/mcp_server.log

Health Check

# Check server health
curl http://127.0.0.1:9000/health

# List available models
curl http://127.0.0.1:9000/models

# View conversation history
curl http://127.0.0.1:9000/history?limit=5

πŸ§ͺ Testing the System

Manual CLI Test

curl -X POST http://127.0.0.1:9000/mcp/command \
  -H "Content-Type: application/json" \
  -d @examples/example_command.json

Python Test Script

import requests

command = {
    "command": "ask_model",
    "params": {
        "provider": "openai",
        "model": "gpt-4o-mini",
        "prompt": "Create a 10mm cube"
    },
    "context": {
        "units": "mm",
        "design_state": "empty"
    }
}

response = requests.post("http://127.0.0.1:9000/mcp/command", json=command)
print(response.json())

🀝 Contributing

Contributions welcome! Please:

  1. Fork the repository
  2. Create feature branch (git checkout -b feature/amazing-feature)
  3. Commit changes (git commit -m 'Add amazing feature')
  4. Push to branch (git push origin feature/amazing-feature)
  5. Open Pull Request

Development Setup

# Install dev dependencies
pip install -e ".[dev]"

# Install pre-commit hooks
pre-commit install

# Run linting
ruff check mcp_server/
black mcp_server/

πŸ“„ License

MIT License - see LICENSE file

πŸ™ Acknowledgments

  • Autodesk Fusion 360 API
  • FastAPI framework
  • Anthropic, OpenAI, Google for LLM APIs
  • Ollama for local LLM support

πŸ“ž Support

πŸ—ΊοΈ Roadmap

  • [ ] WebSocket streaming for real-time chat
  • [ ] Vision model support (CAD screenshot analysis)
  • [ ] Multi-agent orchestration
  • [ ] Generative Design API integration
  • [ ] Geometry export to Markdown/docs
  • [ ] Fusion 360 UI palette integration
  • [ ] 3D preview before execution
  • [ ] Undo/redo action history
  • [ ] Cloud deployment support

Built with ❀️ for the Fusion 360 and AI community

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured