
FS-MCP Server
A Model Context Protocol server that provides intelligent file reading and semantic search capabilities across multiple document formats with security-first access controls.
README
FS-MCP: Universal File Reader & Intelligent Search MCP Server
<div align="center">
A powerful MCP (Model Context Protocol) server that provides intelligent file reading and semantic search capabilities
</div>
English
🚀 Features
- 🧠 Intelligent Text Detection: Automatically identifies text files without relying on file extensions
- 📄 Multi-Format Support: Handles text files and document formats (Word, Excel, PDF, etc.)
- 🔒 Security First: Restricted access to configured safe directories only
- 📏 Range Reading: Supports reading specific line ranges for large files
- 🔄 Document Conversion: Automatic conversion of documents to Markdown with caching
- 🔍 Vector Search: Semantic search powered by AI embeddings
- ⚡ High Performance: Batch processing and intelligent caching support
- 🌐 Multi-language: Supports both English and Chinese content
📋 Table of Contents
- Quick Start
- Installation
- Configuration
- MCP Tools
- Vector Search
- Supported Formats
- Security Features
- Integration
- Development
- Contributing
- License
🚀 Quick Start
1. Clone and Install
git clone https://github.com/yourusername/fs-mcp.git
cd fs-mcp
Using uv (Recommended):
uv sync
Using pip:
pip install -r requirements.txt # If you have a requirements.txt
# OR install directly
pip install fastmcp>=2.0.0 langchain>=0.3.0 python-dotenv>=1.1.0
2. Environment Configuration
Create a .env
file in the project root:
# Security Settings
SAFE_DIRECTORY=. # Directory restriction (required)
MAX_FILE_SIZE_MB=100 # File size limit in MB
# Encoding Settings
DEFAULT_ENCODING=utf-8
# AI Embeddings Configuration (for vector search)
OPENAI_EMBEDDINGS_API_KEY=your-api-key
OPENAI_EMBEDDINGS_BASE_URL=http://your-embedding-service/v1
EMBEDDING_MODEL_NAME=BAAI/bge-m3 # Or your preferred model
EMBEDDING_CHUNK_SIZE=1000
3. Start the Server
python main.py
The server will start on http://localhost:3002
and automatically build the vector index.
🛠️ Installation
System Requirements
- Python: 3.12 or higher
- OS: Windows, macOS, Linux
- Memory: 4GB+ recommended for vector search
- Storage: 1GB+ for caching and indexes
Dependencies
Core dependencies are managed in pyproject.toml
:
fastmcp>=2.0.0
- MCP server frameworklangchain>=0.3.0
- AI and vector searchpython-dotenv>=1.1.0
- Environment management- Document processing libraries (pandas, openpyxl, python-docx, etc.)
⚙️ Configuration
Environment Variables
Variable | Default | Description |
---|---|---|
SAFE_DIRECTORY |
. |
Root directory for file access |
MAX_FILE_SIZE_MB |
100 |
Maximum file size limit |
DEFAULT_ENCODING |
utf-8 |
Default file encoding |
OPENAI_EMBEDDINGS_API_KEY |
- | API key for embedding service |
OPENAI_EMBEDDINGS_BASE_URL |
- | Embedding service URL |
EMBEDDING_MODEL_NAME |
BAAI/bge-m3 |
AI model for embeddings |
EMBEDDING_CHUNK_SIZE |
1000 |
Text chunk size for processing |
Advanced Configuration
For production deployments, consider:
- Setting up rate limiting
- Configuring log rotation
- Using external vector databases
- Setting up monitoring
🔧 MCP Tools
1. view_directory_tree
Purpose: Display directory structure in tree format
view_directory_tree(
directory_path=".", # Target directory
max_depth=3, # Maximum depth
max_entries=300 # Maximum entries to show
)
2. read_file_content
Purpose: Read file content with line range support
read_file_content(
file_path="example.py", # File path
start_line=1, # Start line (optional)
end_line=50 # End line (optional)
)
3. search_documents
Purpose: Intelligent semantic search across documents
search_documents(
query="authentication logic", # Search query
search_type="semantic", # semantic/filename/hybrid/extension
file_extensions=".py,.js", # File type filter (optional)
max_results=10 # Maximum results
)
4. rebuild_document_index
Purpose: Rebuild vector index for search
rebuild_document_index() # No parameters needed
5. get_document_stats
Purpose: Get index statistics and system status
get_document_stats() # Returns comprehensive stats
6. list_files
Purpose: List files in directory with pattern matching
list_files(
directory_path="./src", # Directory to list
pattern="*.py", # File pattern
include_size=True # Include file sizes
)
7. preview_file
Purpose: Quick preview of file content
preview_file(
file_path="example.py", # File to preview
lines=20 # Number of lines
)
🔍 Vector Search
Capabilities
- Semantic Understanding: Search "user authentication" finds "login verification" code
- Synonym Recognition: Search "database" finds "数据库" (Chinese) content
- Multi-language Support: Handles English, Chinese, and mixed content
- Context Awareness: Understands code semantics and relationships
Search Types
- Semantic Search (
semantic
): AI-powered understanding - Filename Search (
filename
): Fast filename matching - Extension Search (
extension
): Filter by file type - Hybrid Search (
hybrid
): Combines semantic + filename
Technical Stack
- Embedding Model: BAAI/bge-m3 (1024-dimensional vectors)
- Vector Database: ChromaDB
- Text Splitting: Intelligent semantic chunking
- Incremental Updates: Hash-based change detection
📁 Supported Formats
Auto-detected Text Files
- Programming languages:
.py
,.js
,.ts
,.java
,.cpp
,.c
,.go
,.rs
, etc. - Config files:
.json
,.yaml
,.toml
,.ini
,.xml
,.env
- Documentation:
.md
,.txt
,.rst
- Web files:
.html
,.css
,.scss
- Data files:
.csv
,.tsv
- Files without extensions (auto-detected)
Document Formats (Auto-converted to Markdown)
- Microsoft Office:
.docx
,.xlsx
,.pptx
- OpenDocument:
.odt
,.ods
,.odp
- PDF:
.pdf
(text extraction) - Legacy formats:
.doc
,.xls
(limited support)
🔒 Security Features
Access Control
- Directory Restriction: Access limited to
SAFE_DIRECTORY
and subdirectories - Path Traversal Protection: Automatic prevention of
../
attacks - Symlink Control: Configurable symbolic link access
- File Size Limits: Prevents reading oversized files
Validation
- Path Sanitization: Automatic path cleaning and validation
- Permission Checks: Verify read permissions before access
- Error Handling: Graceful failure with informative messages
🔗 Integration
Claude Desktop
Add to your Claude Desktop MCP configuration:
{
"mcpServers": {
"fs-mcp": {
"command": "python",
"args": ["main.py"],
"cwd": "/path/to/fs-mcp",
"env": {
"SAFE_DIRECTORY": "/your/project/directory"
}
}
}
}
Other MCP Clients
Connect to http://localhost:3002
using Server-Sent Events (SSE) protocol.
API Integration
The server exposes standard MCP endpoints that can be integrated with any MCP-compatible client.
🏗️ Project Structure
fs-mcp/
├── main.py # Main MCP server
├── src/ # Core modules
│ ├── __init__.py # Package initialization
│ ├── file_reader.py # Core file reading logic
│ ├── security_validator.py # Security and validation
│ ├── text_detector.py # Intelligent file detection
│ ├── config_manager.py # Configuration management
│ ├── document_cache.py # Document caching system
│ ├── file_converters.py # Document format converters
│ ├── dir_tree.py # Directory tree generation
│ ├── embedding_config.py # AI embedding configuration
│ ├── codebase_indexer.py # Vector indexing system
│ ├── codebase_search.py # Search engine
│ ├── index_scheduler.py # Index scheduling
│ └── progress_bar.py # Progress display utilities
├── tests/ # Test suite
├── cache/ # Document cache (auto-created)
├── logs/ # Log files (auto-created)
├── pyproject.toml # Project configuration
├── .env.example # Environment template
├── .gitignore # Git ignore rules
└── README.md # This file
💻 Development
Setting Up Development Environment
# Clone repository
git clone https://github.com/yourusername/fs-mcp.git
cd fs-mcp
# Install with development dependencies
uv sync --group dev
# OR with pip
pip install -e ".[dev]"
Running Tests
# Run all tests
pytest
# Run with coverage
pytest --cov=src
# Run specific test
pytest tests/test_file_reader.py
Code Quality
# Format code
black src/ tests/
# Lint code
flake8 src/ tests/
# Type checking
mypy src/
Debugging
Monitor logs in real-time:
tail -f logs/mcp_server_$(date +%Y%m%d).log
🤝 Contributing
We welcome contributions! Here's how to get started:
1. Fork and Clone
git clone https://github.com/yourusername/fs-mcp.git
cd fs-mcp
2. Create Feature Branch
git checkout -b feature/your-feature-name
3. Make Changes
- Follow the existing code style
- Add tests for new functionality
- Update documentation as needed
4. Test Your Changes
pytest
black src/ tests/
flake8 src/ tests/
5. Submit Pull Request
- Describe your changes clearly
- Reference any related issues
- Ensure all tests pass
Development Guidelines
- Code Style: Follow PEP 8, use Black for formatting
- Testing: Maintain test coverage above 80%
- Documentation: Update README and docstrings
- Commits: Use conventional commit messages
- Security: Follow security best practices
📋 Roadmap
- [ ] Enhanced PDF Processing: Better table and image extraction
- [ ] More Embedding Models: Support for local models
- [ ] Real-time Indexing: File system watchers
- [ ] Advanced Search: Regex, proximity, faceted search
- [ ] Performance Optimization: Async processing, caching improvements
- [ ] Web Interface: Optional web UI for management
- [ ] Plugin System: Custom file type handlers
- [ ] Enterprise Features: Authentication, rate limiting, monitoring
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- FastMCP - MCP server framework
- LangChain - AI integration
- ChromaDB - Vector database
- BGE-M3 - Embedding model
📞 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: Check the
docs/
folder (when available)
中文
🚀 功能特点
- 🧠 智能文本检测: 无需依赖扩展名,自动识别文本文件
- 📄 多格式支持: 支持文本文件和文档格式(Word、Excel、PDF等)
- 🔒 安全验证: 只允许读取配置的安全目录中的文件
- 📏 按行读取: 支持指定行范围读取,便于处理大文件
- 🔄 文档转换: 自动将文档格式转换为Markdown并缓存
- 🔍 向量搜索: 基于AI嵌入的语义搜索
- ⚡ 高性能: 支持批量文件处理和智能缓存
- 🌐 多语言: 支持中英文内容处理
🚀 快速开始
1. 克隆和安装
git clone https://github.com/yourusername/fs-mcp.git
cd fs-mcp
# 推荐使用 uv
uv sync
# 或使用 pip
pip install -r requirements.txt
2. 环境配置
创建 .env
文件:
# 安全设置
SAFE_DIRECTORY=. # 目录访问限制(必需)
MAX_FILE_SIZE_MB=100 # 文件大小限制(MB)
# 编码设置
DEFAULT_ENCODING=utf-8
# AI嵌入配置(用于向量搜索)
OPENAI_EMBEDDINGS_API_KEY=your-api-key
OPENAI_EMBEDDINGS_BASE_URL=http://your-embedding-service/v1
EMBEDDING_MODEL_NAME=BAAI/bge-m3 # 或您偏好的模型
EMBEDDING_CHUNK_SIZE=1000
3. 启动服务器
python main.py
服务器将在 http://localhost:3002
启动并自动建立向量索引。
🛠️ MCP工具说明
详细的工具使用方法请参考英文部分的 MCP Tools 章节。
🔍 向量搜索功能
- 概念匹配:搜索"用户认证"能找到"登录验证"相关代码
- 同义词理解:搜索"database"能找到"数据库"相关内容
- 多语言支持:同时理解中英文代码和注释
- 上下文理解:理解代码的语义和上下文关系
📁 支持的文件格式
详细的格式支持请参考英文部分的 Supported Formats 章节。
🔒 安全特性
- 路径验证: 只允许访问配置的安全目录及其子目录
- 文件大小限制: 防止读取过大文件
- 路径遍历防护: 自动防止
../
等路径遍历攻击 - 符号链接控制: 可配置是否允许访问符号链接
🔗 集成方式
Claude Desktop集成
在 Claude Desktop 的 MCP 配置中添加:
{
"mcpServers": {
"fs-mcp": {
"command": "python",
"args": ["main.py"],
"cwd": "/path/to/fs-mcp",
"env": {
"SAFE_DIRECTORY": "/your/project/directory"
}
}
}
}
💻 开发
开发环境设置
# 克隆仓库
git clone https://github.com/yourusername/fs-mcp.git
cd fs-mcp
# 安装开发依赖
uv sync --group dev
运行测试
# 运行所有测试
pytest
# 运行覆盖率测试
pytest --cov=src
🤝 贡献
欢迎贡献代码!请参考英文部分的 Contributing 章节了解详细信息。
📄 许可证
本项目采用 MIT 许可证 - 详见 LICENSE 文件。
<div align="center">
Made with ❤️ for the AI community
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.