Frontmatter MCP

Frontmatter MCP

Enables querying and updating Markdown frontmatter metadata using DuckDB SQL, with optional semantic search capabilities for finding similar documents based on content.

Category
Visit Server

README

frontmatter-mcp

An MCP server for querying Markdown frontmatter with DuckDB SQL.

Configuration

{
  "mcpServers": {
    "frontmatter": {
      "command": "uvx",
      "args": ["frontmatter-mcp"],
      "env": {
        "FRONTMATTER_BASE_DIR": "/path/to/markdown/directory"
      }
    }
  }
}

With Semantic Search

To enable semantic search, use the [semantic] extras:

{
  "mcpServers": {
    "frontmatter": {
      "command": "uvx",
      "args": ["--from", "frontmatter-mcp[semantic]", "frontmatter-mcp"],
      "env": {
        "FRONTMATTER_BASE_DIR": "/path/to/markdown/directory",
        "FRONTMATTER_ENABLE_SEMANTIC": "true"
      }
    }
  }
}

Installation (Optional)

If you prefer to install globally:

pip install frontmatter-mcp
# or
uv tool install frontmatter-mcp

Tools

query_inspect

Get schema information from frontmatter across files.

Parameter Type Description
glob string Glob pattern relative to base directory

Example:

// Input
{ "glob": "**/*.md" }

// Output
{
  "file_count": 186,
  "schema": {
    "date": { "type": "string", "count": 180, "nullable": true },
    "tags": { "type": "array", "count": 150, "nullable": true }
  }
}

// Output (with semantic search ready)
{
  "file_count": 186,
  "schema": {
    "date": { "type": "string", "count": 180, "nullable": true },
    "tags": { "type": "array", "count": 150, "nullable": true },
    "embedding": { "type": "FLOAT[256]", "nullable": false }
  }
}

query

Query frontmatter data with DuckDB SQL.

Parameter Type Description
glob string Glob pattern relative to base directory
sql string DuckDB SQL query referencing files table

Example:

// Input
{
  "glob": "**/*.md",
  "sql": "SELECT path, date FROM files WHERE date >= '2025-11-01' ORDER BY date DESC"
}

// Output
{
  "columns": ["path", "date"],
  "row_count": 24,
  "results": [
    {"path": "daily/2025-11-28.md", "date": "2025-11-28"},
    {"path": "daily/2025-11-27.md", "date": "2025-11-27"}
  ]
}

update

Update frontmatter properties in a single file.

Parameter Type Description
path string File path relative to base directory
set object Properties to add or overwrite
unset string[] Property names to remove

Example:

// Input
{ "path": "notes/idea.md", "set": {"status": "published"} }

// Output
{ "path": "notes/idea.md", "frontmatter": {"title": "Idea", "status": "published"} }

batch_update

Update frontmatter properties in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
set object Properties to add or overwrite
unset string[] Property names to remove

Example:

// Input
{ "glob": "drafts/*.md", "set": {"status": "review"} }

// Output
{ "updated_count": 5, "updated_files": ["drafts/a.md", "drafts/b.md", ...] }

batch_array_add

Add a value to an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
value any Value to add
allow_duplicates bool Allow duplicate values (default: false)

Example:

// Input
{ "glob": "**/*.md", "property": "tags", "value": "reviewed" }

// Output
{ "updated_count": 42, "updated_files": ["a.md", "b.md", ...] }

batch_array_remove

Remove a value from an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
value any Value to remove

Example:

// Input
{ "glob": "**/*.md", "property": "tags", "value": "draft" }

// Output
{ "updated_count": 15, "updated_files": ["a.md", "b.md", ...] }

batch_array_replace

Replace a value in an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
old_value any Value to replace
new_value any New value

Example:

// Input
{ "glob": "**/*.md", "property": "tags", "old_value": "draft", "new_value": "review" }

// Output
{ "updated_count": 10, "updated_files": ["a.md", "b.md", ...] }

batch_array_sort

Sort an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property
reverse bool Sort in descending order (default: false)

Example:

// Input
{ "glob": "**/*.md", "property": "tags" }

// Output
{ "updated_count": 20, "updated_files": ["a.md", "b.md", ...] }

batch_array_unique

Remove duplicate values from an array property in multiple files.

Parameter Type Description
glob string Glob pattern relative to base directory
property string Name of the array property

Example:

// Input
{ "glob": "**/*.md", "property": "tags" }

// Output
{ "updated_count": 5, "updated_files": ["a.md", "b.md", ...] }

index_status

Get the status of the semantic search index.

This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.

Example:

// Output (not started)
{ "state": "idle" }

// Output (indexing in progress)
{ "state": "indexing" }

// Output (ready)
{ "state": "ready" }

index_refresh

Refresh the semantic search index (differential update).

This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.

Example:

// Output
{ "state": "indexing", "message": "Indexing started", "target_count": 665 }

// Output (when already indexing)
{ "state": "indexing", "message": "Indexing already in progress" }

Technical Notes

All Values Are Strings

All frontmatter values are passed to DuckDB as strings. Use TRY_CAST in SQL for type conversion when needed.

SELECT * FROM files
WHERE TRY_CAST(date AS DATE) >= '2025-11-01'

Arrays Are JSON Strings

Arrays like tags: [ai, python] are stored as JSON strings '["ai", "python"]'. Use from_json() and UNNEST to expand them.

SELECT path, tag
FROM files, UNNEST(from_json(tags, '[""]')) AS t(tag)
WHERE tag = 'ai'

Templater Expression Support

Files containing Obsidian Templater expressions (e.g., <% tp.date.now("YYYY-MM-DD") %>) are handled gracefully. These expressions are treated as strings and naturally excluded by date filtering.

Semantic Search

When semantic search is enabled, you can use the embed() function and embedding column in SQL queries. After running index_refresh, the markdown body content is indexed as vectors.

-- Find semantically similar documents
SELECT path, 1 - array_cosine_distance(embedding, embed('feeling better')) as score
FROM files
ORDER BY score DESC
LIMIT 10

-- Combine with frontmatter filters
SELECT path, date, 1 - array_cosine_distance(embedding, embed('motivation')) as score
FROM files
WHERE date >= '2025-11-01'
ORDER BY score DESC
LIMIT 10

Environment variables:

Variable Default Description
FRONTMATTER_BASE_DIR (required) Base directory for files
FRONTMATTER_ENABLE_SEMANTIC false Enable semantic search
FRONTMATTER_EMBEDDING_MODEL cl-nagoya/ruri-v3-30m Embedding model name
FRONTMATTER_CACHE_DIR FRONTMATTER_BASE_DIR/.frontmatter-mcp Cache directory for embeddings

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured