Frontmatter MCP
Enables querying and updating Markdown frontmatter metadata using DuckDB SQL, with optional semantic search capabilities for finding similar documents based on content.
README
frontmatter-mcp
An MCP server for querying Markdown frontmatter with DuckDB SQL.
Configuration
{
"mcpServers": {
"frontmatter": {
"command": "uvx",
"args": ["frontmatter-mcp"],
"env": {
"FRONTMATTER_BASE_DIR": "/path/to/markdown/directory"
}
}
}
}
With Semantic Search
To enable semantic search, use the [semantic] extras:
{
"mcpServers": {
"frontmatter": {
"command": "uvx",
"args": ["--from", "frontmatter-mcp[semantic]", "frontmatter-mcp"],
"env": {
"FRONTMATTER_BASE_DIR": "/path/to/markdown/directory",
"FRONTMATTER_ENABLE_SEMANTIC": "true"
}
}
}
}
Installation (Optional)
If you prefer to install globally:
pip install frontmatter-mcp
# or
uv tool install frontmatter-mcp
Tools
query_inspect
Get schema information from frontmatter across files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
Example:
// Input
{ "glob": "**/*.md" }
// Output
{
"file_count": 186,
"schema": {
"date": { "type": "string", "count": 180, "nullable": true },
"tags": { "type": "array", "count": 150, "nullable": true }
}
}
// Output (with semantic search ready)
{
"file_count": 186,
"schema": {
"date": { "type": "string", "count": 180, "nullable": true },
"tags": { "type": "array", "count": 150, "nullable": true },
"embedding": { "type": "FLOAT[256]", "nullable": false }
}
}
query
Query frontmatter data with DuckDB SQL.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
sql |
string | DuckDB SQL query referencing files table |
Example:
// Input
{
"glob": "**/*.md",
"sql": "SELECT path, date FROM files WHERE date >= '2025-11-01' ORDER BY date DESC"
}
// Output
{
"columns": ["path", "date"],
"row_count": 24,
"results": [
{"path": "daily/2025-11-28.md", "date": "2025-11-28"},
{"path": "daily/2025-11-27.md", "date": "2025-11-27"}
]
}
update
Update frontmatter properties in a single file.
| Parameter | Type | Description |
|---|---|---|
path |
string | File path relative to base directory |
set |
object | Properties to add or overwrite |
unset |
string[] | Property names to remove |
Example:
// Input
{ "path": "notes/idea.md", "set": {"status": "published"} }
// Output
{ "path": "notes/idea.md", "frontmatter": {"title": "Idea", "status": "published"} }
batch_update
Update frontmatter properties in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
set |
object | Properties to add or overwrite |
unset |
string[] | Property names to remove |
Example:
// Input
{ "glob": "drafts/*.md", "set": {"status": "review"} }
// Output
{ "updated_count": 5, "updated_files": ["drafts/a.md", "drafts/b.md", ...] }
batch_array_add
Add a value to an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
value |
any | Value to add |
allow_duplicates |
bool | Allow duplicate values (default: false) |
Example:
// Input
{ "glob": "**/*.md", "property": "tags", "value": "reviewed" }
// Output
{ "updated_count": 42, "updated_files": ["a.md", "b.md", ...] }
batch_array_remove
Remove a value from an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
value |
any | Value to remove |
Example:
// Input
{ "glob": "**/*.md", "property": "tags", "value": "draft" }
// Output
{ "updated_count": 15, "updated_files": ["a.md", "b.md", ...] }
batch_array_replace
Replace a value in an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
old_value |
any | Value to replace |
new_value |
any | New value |
Example:
// Input
{ "glob": "**/*.md", "property": "tags", "old_value": "draft", "new_value": "review" }
// Output
{ "updated_count": 10, "updated_files": ["a.md", "b.md", ...] }
batch_array_sort
Sort an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
reverse |
bool | Sort in descending order (default: false) |
Example:
// Input
{ "glob": "**/*.md", "property": "tags" }
// Output
{ "updated_count": 20, "updated_files": ["a.md", "b.md", ...] }
batch_array_unique
Remove duplicate values from an array property in multiple files.
| Parameter | Type | Description |
|---|---|---|
glob |
string | Glob pattern relative to base directory |
property |
string | Name of the array property |
Example:
// Input
{ "glob": "**/*.md", "property": "tags" }
// Output
{ "updated_count": 5, "updated_files": ["a.md", "b.md", ...] }
index_status
Get the status of the semantic search index.
This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.
Example:
// Output (not started)
{ "state": "idle" }
// Output (indexing in progress)
{ "state": "indexing" }
// Output (ready)
{ "state": "ready" }
index_refresh
Refresh the semantic search index (differential update).
This tool is only available when FRONTMATTER_ENABLE_SEMANTIC=true.
Example:
// Output
{ "state": "indexing", "message": "Indexing started", "target_count": 665 }
// Output (when already indexing)
{ "state": "indexing", "message": "Indexing already in progress" }
Technical Notes
All Values Are Strings
All frontmatter values are passed to DuckDB as strings. Use TRY_CAST in SQL for type conversion when needed.
SELECT * FROM files
WHERE TRY_CAST(date AS DATE) >= '2025-11-01'
Arrays Are JSON Strings
Arrays like tags: [ai, python] are stored as JSON strings '["ai", "python"]'. Use from_json() and UNNEST to expand them.
SELECT path, tag
FROM files, UNNEST(from_json(tags, '[""]')) AS t(tag)
WHERE tag = 'ai'
Templater Expression Support
Files containing Obsidian Templater expressions (e.g., <% tp.date.now("YYYY-MM-DD") %>) are handled gracefully. These expressions are treated as strings and naturally excluded by date filtering.
Semantic Search
When semantic search is enabled, you can use the embed() function and embedding column in SQL queries. After running index_refresh, the markdown body content is indexed as vectors.
-- Find semantically similar documents
SELECT path, 1 - array_cosine_distance(embedding, embed('feeling better')) as score
FROM files
ORDER BY score DESC
LIMIT 10
-- Combine with frontmatter filters
SELECT path, date, 1 - array_cosine_distance(embedding, embed('motivation')) as score
FROM files
WHERE date >= '2025-11-01'
ORDER BY score DESC
LIMIT 10
Environment variables:
| Variable | Default | Description |
|---|---|---|
| FRONTMATTER_BASE_DIR | (required) | Base directory for files |
| FRONTMATTER_ENABLE_SEMANTIC | false | Enable semantic search |
| FRONTMATTER_EMBEDDING_MODEL | cl-nagoya/ruri-v3-30m | Embedding model name |
| FRONTMATTER_CACHE_DIR | FRONTMATTER_BASE_DIR/.frontmatter-mcp | Cache directory for embeddings |
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.