Fr Torrent Search MCP Server

Fr Torrent Search MCP Server

A Python MCP server that allows programmatic interaction to find torrents programmatically on YggTorrent and La Cale.

Category
Visit Server

README

FR Torrent MCP Server & Wrapper

uv Python PyPI Actions status License: MIT Ask DeepWiki

This repository provides a Python wrapper for the FR Torrent websites and an MCP (Model Context Protocol) server to interact with them programmatically. This allows for easy integration of FR Torrent functionalities into other applications or services.

<a href="https://glama.ai/mcp/servers/@philogicae/fr-torrent-search-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@philogicae/fr-torrent-search-mcp/badge?cache-control=no-cache" alt="FR Torrent Server MCP server" /> </a>

Quickstart

How to use it with MCP Clients > Run it with Docker to bypass common DNS issues

Table of Contents

Features

  • API aggregator for multiple French torrent providers:
    • LaCale: Native support.
    • YggTorrent: Support via local bridge (e.g., YggAPI).
  • MCP server interface for standardized communication (stdio, sse, streamable-http)
  • FastAPI server interface for alternative HTTP access (e.g., for direct API calls or testing)
  • Tools:
    • Search for torrents across all providers
    • Get torrent
      • Get magnet link
      • Download torrent file

Setup

Prerequisites

  • Active account (for YggTorrent).
  • Passkey (for LaCale).
  • Python 3.10+ (required for PyPI install).
  • uv (for local development)
  • Docker and Docker Compose (for Docker setup)

Configuration

The application requires configuration for the supported providers.

  1. Set Environment Variables: The application reads configuration from environment variables. The recommended way is by creating a .env file in your project's root directory.
# YGGTorrent Configuration
#YGG_ENABLE=0
#YGG_DOMAIN=www.yggtorrent.org
#YGG_BASE_URL=http://localhost:8715
YGG_USERNAME=
YGG_PASSWORD=
#TURBO_ENABLED=true

# LaCale Configuration
#LA_CALE_ENABLE=0
#LA_CALE_DOMAIN=la-cale.space
#LA_CALE_TRACKER=https://tracker.la-cale.space/announce
# Find your passkey on https://la-cale.space/profile
LA_CALE_PASSKEY=

# Target folder for torrent files (Default: ./torrents).
#FOLDER_TORRENT_FILES=/path/to/target/folder

Installation

Choose one of the following installation methods.

Install from PyPI (Recommended)

This method is best for using the package as a library or running the server without modifying the code.

  1. Install the package from PyPI:
pip install fr-torrent-search-mcp
  1. Create a .env file in the directory where you'll run the application and add your configuration:
YGG_USERNAME=your_ygg_username
YGG_PASSWORD=your_ygg_password
#TURBO_ENABLED=true
LA_CALE_PASSKEY=your_la_cale_passkey
#FOLDER_TORRENT_FILES=/path/to/target/folder
  1. Run the MCP server (default: stdio):
python -m fr_torrent_search

For Local Development

This method is for contributors who want to modify the source code. Using uv:

  1. Clone the repository:
git clone https://github.com/philogicae/fr-torrent-search-mcp.git
cd fr-torrent-search-mcp
  1. Install dependencies using uv:
uv sync --locked
  1. Create your configuration file by copying the example and add your passkey:
cp .env.example .env
  1. Run the MCP server (default: stdio):
uv run -m fr_torrent_search

For Docker

This method uses Docker to run the server in a container.

compose.yaml is configured to bypass DNS issues (using quad9 DNS).

  1. Clone the repository (if you haven't already):
git clone https://github.com/philogicae/fr-torrent-search-mcp.git
cd fr-torrent-search-mcp
  1. Create your configuration file by copying the example and add your passkey:
cp .env.example .env
  1. Build and run the container using Docker Compose (default port: 8000):
docker compose up --build -d
  1. Access container logs:
docker logs fr-torrent-search-mcp -f

Usage

As Python Wrapper

from fr_torrent_search import fr_torrent_api

results = fr_torrent_api.search_torrents('...', max_items=10)
for torrent in results:
    print(f"{torrent.filename} | {torrent.size} | {torrent.seeders} SE | {torrent.leechers} LE | {torrent.downloads} DL | {torrent.date}")

As MCP Server

from fr_torrent_search import fr_torrent_mcp

fr_torrent_mcp.run(transport="sse")

As FastAPI Server

This project also includes a FastAPI server as an alternative way to interact with the FR Torrent functionalities via a standard HTTP API. This can be useful for direct API calls, integration with other web services, or for testing purposes.

Running the FastAPI Server:

# With Python
python -m fr_torrent_search --mode fastapi
# With uv
uv run -m fr_torrent_search --mode fastapi
  • --host <host>: Default: 0.0.0.0.
  • --port <port>: Default: 8000.
  • --reload: Enables auto-reloading when code changes (useful for development).
  • --workers <workers>: Default: 1.

The FastAPI server will then be accessible at http://<host>:<port>

Available Endpoints: The FastAPI server exposes similar functionalities to the MCP server. Key endpoints include:

  • GET /: Health check endpoint. Returns {"status": "ok"}.
  • POST /torrent/search: Search for torrents (params: query, max_items).
  • GET /torrent/{torrent_id}: Get torrent (returns magnet link or .torrent file).
  • GET /torrent/{torrent_id}/magnet: Get magnet link for a torrent.
  • GET /torrent/{torrent_id}/file: Download .torrent file.
  • GET /docs: Interactive API documentation (Swagger UI).
  • GET /redoc: Alternative API documentation (ReDoc).

Environment variables are configured the same way as for the MCP server.

Via MCP Clients

Usable with any MCP-compatible client. Available tools:

  • search_torrents: Search for torrents.
  • get_torrent: Get torrent data (magnet or file).
  • get_magnet_link: Get the magnet link for a torrent.
  • download_torrent_file: Download the .torrent file for a torrent.

Example with Windsurf

Configuration:

{
  "mcpServers": {
    ...
    # with sse transport (requires installation)
    "fr-torrent-search-mcp": {
      "serverUrl": "http://127.0.0.1:8000/sse"
    }
    # with streamable-http transport (requires installation)
    "fr-torrent-search-mcp": {
      "serverUrl": "http://127.0.0.1:8000/mcp" # not yet supported by every client
    }
    ...
  }
}

Changelog

See CHANGELOG.md for a history of changes to this project.

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured