ffmpeg-mcp

ffmpeg-mcp

Enables comprehensive video and audio processing using FFmpeg, supporting tasks like metadata extraction, clipping, scaling, and adding transitions or overlays. It provides a high-performance interface for building media processing microservices via FastMCP.

Category
Visit Server

README

ffmpeg-mcp

ffmpeg-mcp 🎬⚡

A Python package for media processing using FFmpeg and FastMCP. It enables building microservices that handle video/audio tasks with clean, reusable interfaces.


📖 Overview

This project provides a framework for handling media processing tasks using:

  1. FFmpeg — A powerful multimedia framework for processing audio and video files
  2. FastMCP — A high-performance framework for building microservices

🛠️ Available Tools

1. Metadata & Frames

  • get_video_metadata

    • param(s):

      • input_video_path: str
  • extract_frames

    • params:

      • input_video_path: str | Path
      • number_of_frames: int
      • frame_timestamps: int (eg: 5s, 10s, 15s, ...)

2. Audio

  • extract_audio

    • param(s):

      • input_video_path: str

3. Video Scaling & Resizing

  • scale_video

    • params:

      • input_video_path: str
      • resolution: Optional[str]

4. Overlay Operations

  • overlay_image

    • params:

      • input_video_path: str
      • overlay_image_path: str
      • positioning: Literal[top_left, bottom_left, top_right, bottom_right, center, top_center, bottom_center] = 'top_right'
      • scale: tuple[int, int] | None = (100, 100)
      • keep_audio: bool = True
      • opacity: float | None = None (range 0.0–1.0)
      • start_time: float = 0.0 (in seconds)
      • duration: float | None = None (in seconds; None = until end of video)
  • overlays_video

    • params:

      • input_video_path: str
      • overlay_video_path: str
      • positioning: Literal[top_left, bottom_left, top_right, bottom_right] = 'top_left'

5. Video Editing

  • clip_video

    • params:

      • input_video_path: str
      • start_timestamp
      • duration: int
  • crop_video

    • params:

      • input_video_path
      • safe_crop: bool
      • height: int
      • width: int
      • x_offset: int
      • y_offset: int
  • trim_and_concatenate

    • params:

      • input_video_path
      • number_of_trims: int
      • trim_timestamp: List[(start, end), (start, end), ...]
  • make_gif

    • params:

      • input_video_path
      • start_timestamp
      • duration

6. Concatenation & Transitions

  • concatenate_videos

    • param(s):

      • file_list: list[Path]
  • normalize_video_clips

    • params:

      • input_video_clips: List[str]
      • resolution: tuple default (1280, 720)
      • frame_rate: int default 30
      • crf: int default 23
      • audio_bitrate: str default 128k
      • preset: str default fast
  • concat_clips_with_transition

    • params:

      • input_video_clips: List[str]
      • transition_types: str default fade (e.g., fade, wipeleft, rectcrop, coverup, etc.)
      • transition_duration: float default 2

🧰 Utilities

The utils folder contains helper functions and decorators to enhance the functionality and robustness of the media processing tools.

a. Decorators

  • validate_input_video_path A decorator that checks if the video path exists, is non-empty, and is a valid video file. This ensures that all video processing functions receive a valid input file.

📦 Requirements

  • Python 3.12 or higher
  • uv (package manager)
  • FFmpeg installed on the system

🚀 Usage

The package can be used to build media processing microservices that leverage the power of FFmpeg through a Python interface.

1. Clone this repo

git clone git@github.com:yubraaj11/ffmpeg-mcp.git

2. Sync the project

uv sync --frozen

3. Use via MCP - Cline config

{
  "mcpServers": {
    "ffmpeg-mcp": {
      "autoApprove": [],
      "disabled": false,
      "timeout": 60,
      "command": "uv",
      "args": [
        "--directory",
        "/path/to/ffmpeg-mcp/ffmpeg_mcp",
        "run",
        "main.py"
      ],
      "env": {
        "PYTHONPATH": "/path/to/ffmpeg-mcp"
      },
      "transportType": "stdio"
    }
  }
}

📚 Dependencies

  • ffmpeg-python — Python bindings for FFmpeg
  • fastmcp — Framework for building microservices
  • colorlog — Colored logging output
  • fastapi — Web framework for building APIs
  • pydantic — Data validation and settings management

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured