FetchSERP MCP Server

FetchSERP MCP Server

A Model Context Protocol server that provides AI assistants with access to FetchSERP API capabilities for SEO analysis, SERP data, web scraping, and keyword research.

Category
Visit Server

README

FetchSERP MCP Server

A Model Context Protocol (MCP) server that exposes the FetchSERP API for SEO, SERP analysis, web scraping, and keyword research.

Features

This MCP server provides access to all FetchSERP API endpoints:

SEO & Analysis

  • Domain Analysis: Get backlinks, domain info (DNS, WHOIS, SSL, tech stack)
  • Keyword Research: Search volume, suggestions, long-tail keyword generation
  • SEO Analysis: Comprehensive webpage SEO analysis
  • AI Analysis: AI-powered webpage analysis with custom prompts
  • Moz Integration: Domain authority and Moz metrics

SERP & Search

  • Search Results: Get SERP results from Google, Bing, Yahoo, DuckDuckGo
  • AI Overview: Google's AI overview with JavaScript rendering
  • Enhanced Results: SERP with HTML or text content
  • Ranking Check: Domain ranking for specific keywords
  • Indexation Check: Verify if pages are indexed

Web Scraping

  • Basic Scraping: Scrape webpages without JavaScript
  • JS Scraping: Execute custom JavaScript on pages
  • Proxy Scraping: Scrape with country-specific proxies
  • Domain Scraping: Scrape multiple pages from a domain

User Management

  • Account Info: Check API credits and user information

Installation

No installation required! This MCP server runs directly from GitHub using npx.

Get your FetchSERP API token: Sign up at https://www.fetchserp.com to get your API token. New users get 250 free credits to get started!

Usage

Transport Modes

This MCP server supports two transport modes:

npx mode (Option 1):

  • ✅ Zero installation required
  • ✅ Always gets latest version from GitHub
  • ✅ Perfect for individual users
  • ✅ Runs locally with Claude Desktop

HTTP mode (Option 2):

  • ✅ Remote deployment capability
  • ✅ Multiple clients can connect
  • ✅ Better for enterprise/team environments
  • ✅ Centralized server management
  • ✅ Single API key authentication (FetchSERP token)
  • ✅ Scalable architecture

Configuration

Option 1: Using npx (Local/Remote GitHub) Add this server to your MCP client configuration. For example, in Claude Desktop using github registry :

{
  "mcpServers": {
    "fetchserp": {
      "command": "npx",
      "args": [
        "github:fetchSERP/fetchserp-mcp-server-node"
      ],
      "env": {
        "FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
      }
    }
  }
}

or using npm registry

{
  "mcpServers": {
    "fetchserp": {
      "command": "npx",
      "args": ["fetchserp-mcp-server"],
      "env": {
        "FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
      }
    }
  }
}

Option 2: Claude API with MCP Server For programmatic usage with Claude's API and your deployed MCP server:

const claudeRequest = {
  model: "claude-sonnet-4-20250514",
  max_tokens: 1024,
  messages: [
    {
      role: "user", 
      content: question
    }
  ],
  // MCP Server Configuration
  mcp_servers: [
    {
      type: "url",
      url: "https://mcp.fetchserp.com/sse",
      name: "fetchserp",
      authorization_token: FETCHSERP_API_TOKEN,
      tool_configuration: {
        enabled: true
      }
    }
  ]
};

const response = await httpRequest('https://api.anthropic.com/v1/messages', {
  method: 'POST',
  headers: {
    'x-api-key': CLAUDE_API_KEY,
    'anthropic-version': '2023-06-01',
    'anthropic-beta': 'mcp-client-2025-04-04',
    'content-type': 'application/json'
  }
}, JSON.stringify(claudeRequest));

Option 3: OpenAI API with MCP Server For programmatic usage with OpenAI's API and your deployed MCP server:

const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });

const res = await openai.responses.create({
  model: "gpt-4.1",
  tools: [
    {
      type: "mcp",
      server_label: "fetchserp",
      server_url: "https://mcp.fetchserp.com/sse",
      headers: {
        Authorization: `Bearer ${FETCHSERP_API_TOKEN}`
      }
    }
  ],
  input: question
});

console.log(res.choices[0].message);

Option 4: Docker Use the pre-built Docker image from GitHub Container Registry for containerized deployment:

{
  "mcpServers": {
    "fetchserp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e",
        "FETCHSERP_API_TOKEN",
        "ghcr.io/fetchserp/fetchserp-mcp-server-node:latest"
      ],
      "env": {
        "FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
      }
    }
  }
}

Docker Features:

  • ✅ Containerized deployment
  • ✅ Cross-platform compatibility (ARM64 & AMD64)
  • ✅ Isolated environment
  • ✅ Easy scaling and deployment
  • ✅ Automated builds from GitHub

Manual Docker Usage:

# Pull the latest image
docker pull ghcr.io/fetchserp/fetchserp-mcp-server-node:latest

# Run with environment variable
docker run -i --rm \
  -e FETCHSERP_API_TOKEN="your_token_here" \
  ghcr.io/fetchserp/fetchserp-mcp-server-node:latest

# Or run in HTTP mode on port 8000
docker run -p 8000:8000 \
  -e FETCHSERP_API_TOKEN="your_token_here" \
  -e MCP_HTTP_MODE=true \
  ghcr.io/fetchserp/fetchserp-mcp-server-node:latest

Available Tools

Domain & SEO Analysis

get_backlinks

Get backlinks for a domain

  • domain (required): Target domain
  • search_engine: google, bing, yahoo, duckduckgo (default: google)
  • country: Country code (default: us)
  • pages_number: Pages to search 1-30 (default: 15)

get_domain_info

Get comprehensive domain information

  • domain (required): Target domain

get_domain_emails

Extract emails from a domain

  • domain (required): Target domain
  • search_engine: Search engine (default: google)
  • country: Country code (default: us)
  • pages_number: Pages to search 1-30 (default: 1)

get_webpage_seo_analysis

Comprehensive SEO analysis of a webpage

  • url (required): URL to analyze

get_webpage_ai_analysis

AI-powered webpage analysis

  • url (required): URL to analyze
  • prompt (required): Analysis prompt

get_moz_analysis

Get Moz domain authority and metrics

  • domain (required): Target domain

Keyword Research

get_keywords_search_volume

Get search volume for keywords

  • keywords (required): Array of keywords
  • country: Country code

get_keywords_suggestions

Get keyword suggestions

  • url: URL to analyze (optional if keywords provided)
  • keywords: Array of seed keywords (optional if url provided)
  • country: Country code

get_long_tail_keywords

Generate long-tail keywords

  • keyword (required): Seed keyword
  • search_intent: informational, commercial, transactional, navigational (default: informational)
  • count: Number to generate 1-500 (default: 10)

SERP & Search

get_serp_results

Get search engine results

  • query (required): Search query
  • search_engine: google, bing, yahoo, duckduckgo (default: google)
  • country: Country code (default: us)
  • pages_number: Pages to search 1-30 (default: 1)

get_serp_html

Get SERP results with HTML content

  • Same parameters as get_serp_results

get_serp_text

Get SERP results with text content

  • Same parameters as get_serp_results

get_serp_js_start

Start AI Overview SERP job (returns UUID)

  • query (required): Search query
  • country: Country code (default: us)
  • pages_number: Pages to search 1-10 (default: 1)

get_serp_js_result

Get AI Overview SERP results

  • uuid (required): UUID from start job

check_page_indexation

Check if domain is indexed for keyword

  • domain (required): Target domain
  • keyword (required): Search keyword

get_domain_ranking

Get domain ranking for keyword

  • keyword (required): Search keyword
  • domain (required): Target domain
  • search_engine: Search engine (default: google)
  • country: Country code (default: us)
  • pages_number: Pages to search 1-30 (default: 10)

Web Scraping

scrape_webpage

Scrape webpage without JavaScript

  • url (required): URL to scrape

scrape_domain

Scrape multiple pages from domain

  • domain (required): Target domain
  • max_pages: Maximum pages to scrape, up to 200 (default: 10)

scrape_webpage_js

Scrape webpage with custom JavaScript

  • url (required): URL to scrape
  • js_script (required): JavaScript code to execute

scrape_webpage_js_proxy

Scrape webpage with JavaScript and proxy

  • url (required): URL to scrape
  • country (required): Proxy country
  • js_script (required): JavaScript code to execute

User Management

get_user_info

Get user information and API credits

  • No parameters required

API Token

You need a FetchSERP API token to use this server.

Getting your API token:

  1. Sign up at https://www.fetchserp.com
  2. New users automatically receive 250 free credits to get started
  3. Your API token will be available in your dashboard

Set the token as an environment variable:

export FETCHSERP_API_TOKEN="your_token_here"

Error Handling

The server includes comprehensive error handling:

  • Missing API token validation
  • API response error handling
  • Input validation
  • Proper MCP error responses

Docker deploy

docker build --platform=linux/amd64 -t olivier86/fetchserp-mcp-server-node:latest --push .

docker run -p 8000:8000 olivier86/fetchserp-mcp-server-node:latest

To start tunneling

nohup ngrok http 8000 --domain guinea-dominant-jolly.ngrok-free.app > /var/log/ngrok.log 2>&1 &

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured