
FetchSERP MCP Server
A Model Context Protocol server that provides AI assistants with access to FetchSERP API capabilities for SEO analysis, SERP data, web scraping, and keyword research.
README
FetchSERP MCP Server
A Model Context Protocol (MCP) server that exposes the FetchSERP API for SEO, SERP analysis, web scraping, and keyword research.
Features
This MCP server provides access to all FetchSERP API endpoints:
SEO & Analysis
- Domain Analysis: Get backlinks, domain info (DNS, WHOIS, SSL, tech stack)
- Keyword Research: Search volume, suggestions, long-tail keyword generation
- SEO Analysis: Comprehensive webpage SEO analysis
- AI Analysis: AI-powered webpage analysis with custom prompts
- Moz Integration: Domain authority and Moz metrics
SERP & Search
- Search Results: Get SERP results from Google, Bing, Yahoo, DuckDuckGo
- AI Overview: Google's AI overview with JavaScript rendering
- Enhanced Results: SERP with HTML or text content
- Ranking Check: Domain ranking for specific keywords
- Indexation Check: Verify if pages are indexed
Web Scraping
- Basic Scraping: Scrape webpages without JavaScript
- JS Scraping: Execute custom JavaScript on pages
- Proxy Scraping: Scrape with country-specific proxies
- Domain Scraping: Scrape multiple pages from a domain
User Management
- Account Info: Check API credits and user information
Installation
No installation required! This MCP server runs directly from GitHub using npx.
Get your FetchSERP API token: Sign up at https://www.fetchserp.com to get your API token. New users get 250 free credits to get started!
Usage
Transport Modes
This MCP server supports two transport modes:
npx mode (Option 1):
- ✅ Zero installation required
- ✅ Always gets latest version from GitHub
- ✅ Perfect for individual users
- ✅ Runs locally with Claude Desktop
HTTP mode (Option 2):
- ✅ Remote deployment capability
- ✅ Multiple clients can connect
- ✅ Better for enterprise/team environments
- ✅ Centralized server management
- ✅ Single API key authentication (FetchSERP token)
- ✅ Scalable architecture
Configuration
Option 1: Using npx (Local/Remote GitHub) Add this server to your MCP client configuration. For example, in Claude Desktop using github registry :
{
"mcpServers": {
"fetchserp": {
"command": "npx",
"args": [
"github:fetchSERP/fetchserp-mcp-server-node"
],
"env": {
"FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
}
}
}
}
or using npm registry
{
"mcpServers": {
"fetchserp": {
"command": "npx",
"args": ["fetchserp-mcp-server"],
"env": {
"FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
}
}
}
}
Option 2: Claude API with MCP Server For programmatic usage with Claude's API and your deployed MCP server:
const claudeRequest = {
model: "claude-sonnet-4-20250514",
max_tokens: 1024,
messages: [
{
role: "user",
content: question
}
],
// MCP Server Configuration
mcp_servers: [
{
type: "url",
url: "https://mcp.fetchserp.com/sse",
name: "fetchserp",
authorization_token: FETCHSERP_API_TOKEN,
tool_configuration: {
enabled: true
}
}
]
};
const response = await httpRequest('https://api.anthropic.com/v1/messages', {
method: 'POST',
headers: {
'x-api-key': CLAUDE_API_KEY,
'anthropic-version': '2023-06-01',
'anthropic-beta': 'mcp-client-2025-04-04',
'content-type': 'application/json'
}
}, JSON.stringify(claudeRequest));
Option 3: OpenAI API with MCP Server For programmatic usage with OpenAI's API and your deployed MCP server:
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
const res = await openai.responses.create({
model: "gpt-4.1",
tools: [
{
type: "mcp",
server_label: "fetchserp",
server_url: "https://mcp.fetchserp.com/sse",
headers: {
Authorization: `Bearer ${FETCHSERP_API_TOKEN}`
}
}
],
input: question
});
console.log(res.choices[0].message);
Option 4: Docker Use the pre-built Docker image from GitHub Container Registry for containerized deployment:
{
"mcpServers": {
"fetchserp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"FETCHSERP_API_TOKEN",
"ghcr.io/fetchserp/fetchserp-mcp-server-node:latest"
],
"env": {
"FETCHSERP_API_TOKEN": "your_fetchserp_api_token_here"
}
}
}
}
Docker Features:
- ✅ Containerized deployment
- ✅ Cross-platform compatibility (ARM64 & AMD64)
- ✅ Isolated environment
- ✅ Easy scaling and deployment
- ✅ Automated builds from GitHub
Manual Docker Usage:
# Pull the latest image
docker pull ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
# Run with environment variable
docker run -i --rm \
-e FETCHSERP_API_TOKEN="your_token_here" \
ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
# Or run in HTTP mode on port 8000
docker run -p 8000:8000 \
-e FETCHSERP_API_TOKEN="your_token_here" \
-e MCP_HTTP_MODE=true \
ghcr.io/fetchserp/fetchserp-mcp-server-node:latest
Available Tools
Domain & SEO Analysis
get_backlinks
Get backlinks for a domain
- domain (required): Target domain
- search_engine: google, bing, yahoo, duckduckgo (default: google)
- country: Country code (default: us)
- pages_number: Pages to search 1-30 (default: 15)
get_domain_info
Get comprehensive domain information
- domain (required): Target domain
get_domain_emails
Extract emails from a domain
- domain (required): Target domain
- search_engine: Search engine (default: google)
- country: Country code (default: us)
- pages_number: Pages to search 1-30 (default: 1)
get_webpage_seo_analysis
Comprehensive SEO analysis of a webpage
- url (required): URL to analyze
get_webpage_ai_analysis
AI-powered webpage analysis
- url (required): URL to analyze
- prompt (required): Analysis prompt
get_moz_analysis
Get Moz domain authority and metrics
- domain (required): Target domain
Keyword Research
get_keywords_search_volume
Get search volume for keywords
- keywords (required): Array of keywords
- country: Country code
get_keywords_suggestions
Get keyword suggestions
- url: URL to analyze (optional if keywords provided)
- keywords: Array of seed keywords (optional if url provided)
- country: Country code
get_long_tail_keywords
Generate long-tail keywords
- keyword (required): Seed keyword
- search_intent: informational, commercial, transactional, navigational (default: informational)
- count: Number to generate 1-500 (default: 10)
SERP & Search
get_serp_results
Get search engine results
- query (required): Search query
- search_engine: google, bing, yahoo, duckduckgo (default: google)
- country: Country code (default: us)
- pages_number: Pages to search 1-30 (default: 1)
get_serp_html
Get SERP results with HTML content
- Same parameters as
get_serp_results
get_serp_text
Get SERP results with text content
- Same parameters as
get_serp_results
get_serp_js_start
Start AI Overview SERP job (returns UUID)
- query (required): Search query
- country: Country code (default: us)
- pages_number: Pages to search 1-10 (default: 1)
get_serp_js_result
Get AI Overview SERP results
- uuid (required): UUID from start job
check_page_indexation
Check if domain is indexed for keyword
- domain (required): Target domain
- keyword (required): Search keyword
get_domain_ranking
Get domain ranking for keyword
- keyword (required): Search keyword
- domain (required): Target domain
- search_engine: Search engine (default: google)
- country: Country code (default: us)
- pages_number: Pages to search 1-30 (default: 10)
Web Scraping
scrape_webpage
Scrape webpage without JavaScript
- url (required): URL to scrape
scrape_domain
Scrape multiple pages from domain
- domain (required): Target domain
- max_pages: Maximum pages to scrape, up to 200 (default: 10)
scrape_webpage_js
Scrape webpage with custom JavaScript
- url (required): URL to scrape
- js_script (required): JavaScript code to execute
scrape_webpage_js_proxy
Scrape webpage with JavaScript and proxy
- url (required): URL to scrape
- country (required): Proxy country
- js_script (required): JavaScript code to execute
User Management
get_user_info
Get user information and API credits
- No parameters required
API Token
You need a FetchSERP API token to use this server.
Getting your API token:
- Sign up at https://www.fetchserp.com
- New users automatically receive 250 free credits to get started
- Your API token will be available in your dashboard
Set the token as an environment variable:
export FETCHSERP_API_TOKEN="your_token_here"
Error Handling
The server includes comprehensive error handling:
- Missing API token validation
- API response error handling
- Input validation
- Proper MCP error responses
Docker deploy
docker build --platform=linux/amd64 -t olivier86/fetchserp-mcp-server-node:latest --push .
docker run -p 8000:8000 olivier86/fetchserp-mcp-server-node:latest
To start tunneling
nohup ngrok http 8000 --domain guinea-dominant-jolly.ngrok-free.app > /var/log/ngrok.log 2>&1 &
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.