Fetch JSONPath MCP
Enables efficient extraction of specific data from JSON APIs using JSONPath patterns, reducing token usage by up to 99% compared to fetching entire responses. Supports single and batch operations for both JSON extraction and raw text retrieval from URLs.
README
Fetch JSONPath MCP
A Model Context Protocol (MCP) server that provides tools for fetching and extracting JSON data from URLs using JSONPath patterns.
🎯 Why Use This?
Reduce LLM Token Usage & Hallucination - Instead of fetching entire JSON responses and wasting tokens, extract only the data you need.
Traditional Fetch vs JSONPath Extract
❌ Traditional fetch (wasteful):
// API returns 2000+ tokens
{
"data": [
{
"id": 1,
"name": "Alice",
"email": "alice@example.com",
"avatar": "https://...",
"profile": {
"bio": "Long bio text...",
"settings": {...},
"preferences": {...},
"metadata": {...}
},
"posts": [...],
"followers": [...],
"created_at": "2023-01-01",
"updated_at": "2024-01-01"
},
// ... 50 more users
],
"pagination": {...},
"meta": {...}
}
✅ JSONPath extract (efficient):
// Only 10 tokens - exactly what you need!
["Alice", "Bob", "Charlie"]
Using pattern: data[*].name saves 99% tokens and eliminates model hallucination from irrelevant data.
Installation
For most IDEs, use the uvx tool to run the server.
{
"mcpServers": {
"fetch-jsonpath-mcp": {
"command": "uvx",
"args": [
"fetch-jsonpath-mcp"
]
}
}
}
<details> <summary><b>Install in Claude Code</b></summary>
claude mcp add fetch-jsonpath-mcp -- uvx fetch-jsonpath-mcp
</details>
<details> <summary><b>Install in Cursor</b></summary>
{
"mcpServers": {
"fetch-jsonpath-mcp": {
"command": "uvx",
"args": ["fetch-jsonpath-mcp"]
}
}
}
</details>
<details> <summary><b>Install in Windsurf</b></summary>
Add this to your Windsurf MCP config file. See Windsurf MCP docs for more info.
Windsurf Local Server Connection
{
"mcpServers": {
"fetch-jsonpath-mcp": {
"command": "uvx",
"args": ["fetch-jsonpath-mcp"]
}
}
}
</details>
<details> <summary><b>Install in VS Code</b></summary>
"mcp": {
"servers": {
"fetch-jsonpath-mcp": {
"type": "stdio",
"command": "uvx",
"args": ["fetch-jsonpath-mcp"]
}
}
}
</details>
Development Setup
1. Install Dependencies
uv sync
2. Start Demo Server (Optional)
# Install demo server dependencies
uv add fastapi uvicorn
# Start demo server on port 8080
uv run demo-server
3. Run MCP Server
uv run fetch-jsonpath-mcp
Demo Server Data
The demo server at http://localhost:8080 returns:
{
"foo": [{"baz": 1, "qux": "a"}, {"baz": 2, "qux": "b"}],
"bar": {
"items": [10, 20, 30],
"config": {"enabled": true, "name": "example"}
},
"metadata": {"version": "1.0.0"}
}
Available Tools
get-json
Extract JSON data using JSONPath patterns.
{
"name": "get-json",
"arguments": {
"url": "http://localhost:8080",
"pattern": "foo[*].baz"
}
}
Returns: [1, 2]
get-text
Get raw text content from any URL.
{
"name": "get-text",
"arguments": {
"url": "http://localhost:8080"
}
}
Returns: {"foo": [{"baz": 1, "qux": "a"}, {"baz": 2, "qux": "b"}], "bar": {"items": [10, 20, 30], "config": {"enabled": true, "name": "example"}}, "metadata": {"version": "1.0.0"}}
batch-get-json
Process multiple URLs with different JSONPath patterns.
{
"name": "batch-get-json",
"arguments": {
"requests": [
{"url": "http://localhost:8080", "pattern": "foo[*].baz"},
{"url": "http://localhost:8080", "pattern": "bar.items[*]"}
]
}
}
Returns: [[1, 2], [10, 20, 30]]
batch-get-text
Get text content from multiple URLs.
{
"name": "batch-get-text",
"arguments": {
"urls": ["http://localhost:8080", "http://localhost:8080"]
}
}
Returns: ["JSON content...", "JSON content..."]
JSONPath Examples
This project uses jsonpath-ng for JSONPath implementation.
| Pattern | Result | Description |
|---|---|---|
foo[*].baz |
[1, 2] |
Get all baz values |
bar.items[*] |
[10, 20, 30] |
Get all items |
metadata.version |
["1.0.0"] |
Get version |
For complete JSONPath syntax reference, see the jsonpath-ng documentation.
🚀 Performance Benefits
- Token Efficiency: Extract only needed data, not entire JSON responses
- Faster Processing: Smaller payloads = faster LLM responses
- Reduced Hallucination: Less irrelevant data = more accurate outputs
- Cost Savings: Fewer tokens = lower API costs
- Better Focus: Clean data helps models stay on task
Configuration
Set environment variables:
export JSONRPC_MCP_TIMEOUT=30
export JSONRPC_MCP_HEADERS='{"Authorization": "Bearer token"}'
export JSONRPC_MCP_PROXY="http://proxy.example.com:8080"
Development
# Run tests
pytest
# Check code quality
ruff check --fix
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.