
Fermat MCP
A FastMCP server for mathematical computations, including numerical and symbolic calculations with NumPy and SymPy integration, as well as data visualization through Matplotlib.
README
Fermat MCP
This project provides a FastMCP server for mathematical computations, including numerical and symbolic calculations, as well as plotting.
Modules
1. mpl_mcp - Matplotlib Integration
Feature | Description |
---|---|
plot_barchart |
Plots bar charts of given data values |
plot_scatter |
Creates scatter plots from data points |
plot_chart |
Plots line, scatter, or bar charts |
plot_stem |
Creates stem plots for discrete data |
plot_stack |
Generates stacked area/bar charts |
eqn_chart |
Plots mathematical equations |
2. numpy_mcp - NumPy Integration
Category | Operations |
---|---|
Basic Math | add, sub, mul, div, power, abs, exp, log, sqrt |
Trigonometric | sin, cos, tan |
Statistics | mean, median, std, var, min, max, argmin, argmax, percentile |
Linear Algebra | dot, matmul, inv, det, eig, solve, svd |
Matrix Operations | create, zeros, ones, full, arange, linspace |
Array Manipulation | reshape, flatten, concatenate, transpose, stack |
3. sympy_mcp - SymPy Integration
Category | Operations |
---|---|
Algebra | simplify, expand, factor, collect |
Calculus | diff, integrate, limit, series |
Equations | solve, solveset, linsolve, nonlinsolve |
Matrix Operations | create, det, inv, rref, eigenvals |
Setup
Requirements
-
Python 3.12 or higher (To install Python3.12 follow Python Download)
-
uv (To install uv follow uv Installation)
Clone the repository
git clone https://github.com/abhiphile/fermat-mcp
Visual Studio Code, Windsurf
You can find the mcp.json
file in the
MCP: Open User Configuration or MCP: Open Workspace Configuration
Add the following to your mcp.json
:
{
"mcpServers": {
"fmcp": {
"command": "bash",
"args": ["MCP_SERVER_ABSOLUTE_PATH/setup.sh"],
"description": "fmcp server is for mathematical computations, including numerical and symbolic calculations, as well as plotting."
}
}
}
Gemini CLI
-
Open your Gemini settings JSON located in ~/.gemini/settings.json where ~ is your home directory.
-
Add the following to your settings.json:
{
"mcpServers": {
"fmcp": {
"command": "bash",
"args": ["MCP_SERVER_ABSOLUTE_PATH/setup.sh"],
"description": "fmcp server is for mathematical computations, including numerical and symbolic calculations, as well as plotting."
}
}
}
Installing via Smithery
To install Fermat MCP for local usage automatically via Smithery:
npx -y @smithery/cli install @abhiphile/fermat-mcp --client gemini
Example Usage
- Using Gemini CLI
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ > Can you use fmcp server and using numpy method find the eigen values of this 8*8 matrix, |
│ 2 1 3 1 1 8 4 2 |
│ 6 6 0 7 1 4 6 1 │
│ 9 2 1 8 7 9 9 0 │
│ 2 5 6 6 9 8 0 1 │
│ 1 3 6 2 3 8 8 1 │
│ 9 4 2 2 1 2 2 9 │
│ 8 6 4 4 2 0 2 8 │
│ 0 0 0 6 6 7 5 6 │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ ✔ numpy_mcp_numerical_operation (fmcp MCP Server) {"a":[[2,1,3,1,1,8,4,2],[6,6,0,7,1,4,6,1],[9,2,1,8,7,9,9,0],[2,5,6,6,9,8,0,1],[1,3,… │
│ │
│ {"eigenvalues":["32.077244457548815+0j","-11.531090644775198+0j","-6.6653982146786195+0j","0.6715984762411508+3.37024850 │
│ 10270413j","0.6715984762411508-3.3702485010270413j","4.541270555490195+2.776364664923869j","4.541270555490195-2.77636466 │
│ 4923869j","3.6935063384423428+0j"],"eigenvectors":[["-0.23263835483680192+0j","-0.2264723575289234+0j","-0.4308391916391 │
│ 0195+0j","-0.012346573390129022+0.17748655663058255j","-0.012346573390129022-0.17748655663058255j","-0.21221572277027187 │
│ +0.3524396218277479j","-0.21221572277027187-0.3524396218277479j","0.3451499664861578+0j"],["-0.31955742545335186+0j","-0 │
│ .2569860493445581+0j","0.05691886770041556+0j","-0.35591013681869693-0.2242364092694275j","-0.35591013681869693+0.224236 │
│ 4092694275j","0.1932161673963751-0.39527849111641133j","0.1932161673963751+0.39527849111641133j","-0.7979681696063214+0j │
│ "],["-0.46626263247473404+0j","-0.4684914620112376+0j","0.5469400556350749+0j","0.34325164099973565+0.06607019711949293j │
│ ","0.34325164099973565-0.06607019711949293j","0.21312270185159682+0.28822307710358636j","0.21312270185159682-0.288223077 │
│ 10358636j","0.42707422750984786+0j"],["-0.41589316441674523+0j","0.2291771012892302+0j","0.09410792992600435+0j","0.6375 │
│ 92441360358+0j","0.637592441360358+-0j","0.46446646137729414+0j","0.46446646137729414+-0j","0.08171661775583623+0j"],["- │
│ 0.35812884189789035+0j","-0.26551071423139044+0j","-0.649979374400915+0j","-0.2999153430497845+0.20110182336747695j","-0 │
│ .2999153430497845-0.20110182336747695j","0.04424367733961273-0.020400357434930304j","0.04424367733961273+0.0204003574349 │
│ 30304j","-0.037276545325188024+0j"],["-0.3042416233100104+0j","0.4027405071320744+0j","0.2343447346668298+0j","-0.119224 │
│ 87219398595+0.10317726668781271j","-0.11922487219398595-0.10317726668781271j","-0.3387759141362585+0.15790241128043445j" │
│ ,"-0.3387759141362585-0.15790241128043445j","0.11473144194899779+0j"],["-0.35389732755448017+0j","0.5359362131480812+0j" │
│ ,"0.13989902586074168+0j","-0.16008513226461316-0.26111873108374495j","-0.16008513226461316+0.26111873108374495j","0.055 │
│ 729749650881726-0.22748184206919145j","0.055729749650881726+0.22748184206919145j","-0.19838514696566653+0j"],["-0.327615 │
│ 5213691367+0j","-0.30122843153433887+0j","0.07858579556736099+0j","0.00042251379361638556-0.11670182367986544j","0.00042 │
│ 251379361638556+0.11670182367986544j","-0.18590228871569267-0.2479130526139182j","-0.18590228871569267+0.247913052613918 │
│ 2j","-0.03374593856285834+0j"]]} │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ Of course, I can do that. Here are the eigenvalues for the given matrix:
32.077244457548815
-11.531090644775198
-6.6653982146786195
0.6715984762411508 + 3.3702485010270413j
0.6715984762411508 - 3.3702485010270413j
4.541270555490195 + 2.776364664923869j
4.541270555490195 - 2.776364664923869j
3.6935063384423428
- Using Visual Studio Code, Windsurf
Here the task was to plot both x**2 and sin(x) in the same plot.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.