Fermat MCP

Fermat MCP

A FastMCP server for mathematical computations, including numerical and symbolic calculations with NumPy and SymPy integration, as well as data visualization through Matplotlib.

Category
Visit Server

README

Fermat MCP

smithery badge

This project provides a FastMCP server for mathematical computations, including numerical and symbolic calculations, as well as plotting.

Modules

1. mpl_mcp - Matplotlib Integration

Feature Description
plot_barchart Plots bar charts of given data values
plot_scatter Creates scatter plots from data points
plot_chart Plots line, scatter, or bar charts
plot_stem Creates stem plots for discrete data
plot_stack Generates stacked area/bar charts
eqn_chart Plots mathematical equations

2. numpy_mcp - NumPy Integration

Category Operations
Basic Math add, sub, mul, div, power, abs, exp, log, sqrt
Trigonometric sin, cos, tan
Statistics mean, median, std, var, min, max, argmin, argmax, percentile
Linear Algebra dot, matmul, inv, det, eig, solve, svd
Matrix Operations create, zeros, ones, full, arange, linspace
Array Manipulation reshape, flatten, concatenate, transpose, stack

3. sympy_mcp - SymPy Integration

Category Operations
Algebra simplify, expand, factor, collect
Calculus diff, integrate, limit, series
Equations solve, solveset, linsolve, nonlinsolve
Matrix Operations create, det, inv, rref, eigenvals

Setup

Requirements

Clone the repository

git clone https://github.com/abhiphile/fermat-mcp

Visual Studio Code, Windsurf

You can find the mcp.json file in the MCP: Open User Configuration or MCP: Open Workspace Configuration

vs-code-1

Add the following to your mcp.json:

{
  "mcpServers": {
    "fmcp": {
      "command": "bash",
      "args": ["MCP_SERVER_ABSOLUTE_PATH/setup.sh"],
      "description": "fmcp server is for mathematical computations, including numerical and symbolic calculations, as well as plotting."
    }
  }
}

Gemini CLI

  • Open your Gemini settings JSON located in ~/.gemini/settings.json where ~ is your home directory.

  • Add the following to your settings.json:

{
  "mcpServers": {
    "fmcp": {
      "command": "bash",
      "args": ["MCP_SERVER_ABSOLUTE_PATH/setup.sh"],
      "description": "fmcp server is for mathematical computations, including numerical and symbolic calculations, as well as plotting."
    }
  }
}

Installing via Smithery

To install Fermat MCP for local usage automatically via Smithery:

npx -y @smithery/cli install @abhiphile/fermat-mcp --client gemini

Example Usage

  • Using Gemini CLI
╭──────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│  > Can you use fmcp server and using numpy method find the eigen values of this 8*8 matrix,                  |
│    2 1 3 1 1 8 4 2                                                                                           |
│    6 6 0 7 1 4 6 1                                                                                           │
│    9 2 1 8 7 9 9 0                                                                                           │
│    2 5 6 6 9 8 0 1                                                                                           │
│    1 3 6 2 3 8 8 1                                                                                           │
│    9 4 2 2 1 2 2 9                                                                                           │
│    8 6 4 4 2 0 2 8                                                                                           │
│    0 0 0 6 6 7 5 6                                                                                           │
╰──────────────────────────────────────────────────────────────────────────────────────────────────────────────╯

 ╭─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
 │ ✔  numpy_mcp_numerical_operation (fmcp MCP Server) {"a":[[2,1,3,1,1,8,4,2],[6,6,0,7,1,4,6,1],[9,2,1,8,7,9,9,0],[2,5,6,6,9,8,0,1],[1,3,… │
 │                                                                                                                                         │
 │    {"eigenvalues":["32.077244457548815+0j","-11.531090644775198+0j","-6.6653982146786195+0j","0.6715984762411508+3.37024850             │
 │    10270413j","0.6715984762411508-3.3702485010270413j","4.541270555490195+2.776364664923869j","4.541270555490195-2.77636466             │
 │    4923869j","3.6935063384423428+0j"],"eigenvectors":[["-0.23263835483680192+0j","-0.2264723575289234+0j","-0.4308391916391             │
 │    0195+0j","-0.012346573390129022+0.17748655663058255j","-0.012346573390129022-0.17748655663058255j","-0.21221572277027187             │
 │    +0.3524396218277479j","-0.21221572277027187-0.3524396218277479j","0.3451499664861578+0j"],["-0.31955742545335186+0j","-0             │
 │    .2569860493445581+0j","0.05691886770041556+0j","-0.35591013681869693-0.2242364092694275j","-0.35591013681869693+0.224236             │
 │    4092694275j","0.1932161673963751-0.39527849111641133j","0.1932161673963751+0.39527849111641133j","-0.7979681696063214+0j             │
 │    "],["-0.46626263247473404+0j","-0.4684914620112376+0j","0.5469400556350749+0j","0.34325164099973565+0.06607019711949293j             │
 │    ","0.34325164099973565-0.06607019711949293j","0.21312270185159682+0.28822307710358636j","0.21312270185159682-0.288223077             │
 │    10358636j","0.42707422750984786+0j"],["-0.41589316441674523+0j","0.2291771012892302+0j","0.09410792992600435+0j","0.6375             │
 │    92441360358+0j","0.637592441360358+-0j","0.46446646137729414+0j","0.46446646137729414+-0j","0.08171661775583623+0j"],["-             │
 │    0.35812884189789035+0j","-0.26551071423139044+0j","-0.649979374400915+0j","-0.2999153430497845+0.20110182336747695j","-0             │
 │    .2999153430497845-0.20110182336747695j","0.04424367733961273-0.020400357434930304j","0.04424367733961273+0.0204003574349             │
 │    30304j","-0.037276545325188024+0j"],["-0.3042416233100104+0j","0.4027405071320744+0j","0.2343447346668298+0j","-0.119224             │
 │    87219398595+0.10317726668781271j","-0.11922487219398595-0.10317726668781271j","-0.3387759141362585+0.15790241128043445j"             │
 │    ,"-0.3387759141362585-0.15790241128043445j","0.11473144194899779+0j"],["-0.35389732755448017+0j","0.5359362131480812+0j"             │
 │    ,"0.13989902586074168+0j","-0.16008513226461316-0.26111873108374495j","-0.16008513226461316+0.26111873108374495j","0.055             │
 │    729749650881726-0.22748184206919145j","0.055729749650881726+0.22748184206919145j","-0.19838514696566653+0j"],["-0.327615             │
 │    5213691367+0j","-0.30122843153433887+0j","0.07858579556736099+0j","0.00042251379361638556-0.11670182367986544j","0.00042             │
 │    251379361638556+0.11670182367986544j","-0.18590228871569267-0.2479130526139182j","-0.18590228871569267+0.247913052613918             │
 │    2j","-0.03374593856285834+0j"]]}                                                                                                     │
 ╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
✦ Of course, I can do that. Here are the eigenvalues for the given matrix:

  32.077244457548815
  -11.531090644775198
  -6.6653982146786195
  0.6715984762411508 + 3.3702485010270413j
  0.6715984762411508 - 3.3702485010270413j
  4.541270555490195 + 2.776364664923869j
  4.541270555490195 - 2.776364664923869j
  3.6935063384423428
  • Using Visual Studio Code, Windsurf Here the task was to plot both x**2 and sin(x) in the same plot. GUI Demo 1-2 GUI Demo 2-2

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured