FCCS MCP Agentic Server

FCCS MCP Agentic Server

Enables interaction with Oracle EPM Cloud Financial Consolidation and Close (FCCS) through 25+ tools covering REST API operations including jobs, dimensions, journals, data management, reports, and consolidation tasks.

Category
Visit Server

README

FCCS MCP Agentic Server

Oracle EPM Cloud Financial Consolidation and Close (FCCS) agentic server using Google ADK with MCP support.

Features

  • 25+ FCCS Tools: Full coverage of Oracle FCCS REST API
  • Dual Mode: MCP server (Claude Desktop) + Web API (FastAPI)
  • Memory & Feedback: PostgreSQL persistence with RL tracking
  • Mock Mode: Development without real FCCS connection
  • Bilingual: English and Portuguese support

Quick Start

Windows (Recommended)

Automated Setup:

.\setup-windows.bat

This will:

  • Create virtual environment
  • Install all dependencies
  • Create .env file from template
  • Guide you through configuration

Manual Setup:

  1. Create virtual environment: python -m venv venv
  2. Activate: .\venv\Scripts\Activate.ps1
  3. Install: pip install -e .
  4. Configure: Copy .env.example to .env and edit
  5. Initialize database: python scripts\init_db.py (if using PostgreSQL)

Quick Commands:

  • Start web server: .\start-server.bat
  • Start MCP server: .\start-mcp-server.bat
  • Install dependencies: .\install-dependencies.bat
  • Initialize database: .\init-database.bat

See WINDOWS_DEPLOYMENT.md for detailed Windows setup guide.

Linux/Mac

1. Install Dependencies:

pip install -e .

2. Configure Environment:

cp .env.example .env
# Edit .env with your settings

3. Run:

MCP Server (for Claude Desktop):

python -m cli.mcp_server

Web Server (for API access):

python -m web.server

Interactive CLI:

python -m cli.main

Claude Desktop Configuration

Add to %APPDATA%\Claude\claude_desktop_config.json:

{
  "mcpServers": {
    "fccs-agent": {
      "command": "python",
      "args": ["-m", "cli.mcp_server"],
      "cwd": "C:\\path\\to\\fccs-mcp-ag-server",
      "env": {
        "FCCS_MOCK_MODE": "true"
      }
    }
  }
}

API Endpoints

Endpoint Method Description
/ GET Health check
/tools GET List available tools
/execute POST Execute a tool
/tools/{name} POST Call specific tool
/feedback POST Submit user feedback
/metrics GET Get tool metrics

Available Tools

Application

  • get_application_info - FCCS application details
  • get_rest_api_version - API version info

Jobs

  • list_jobs - List recent jobs
  • get_job_status - Job status by ID
  • run_business_rule - Execute business rules
  • run_data_rule - Execute data load rules

Dimensions

  • get_dimensions - List all dimensions
  • get_members - Get dimension members
  • get_dimension_hierarchy - Build hierarchy tree

Journals

  • get_journals - List journals
  • get_journal_details - Journal details
  • perform_journal_action - Approve, reject, post
  • update_journal_period - Update period
  • export_journals / import_journals

Data

  • export_data_slice - Export grid data
  • smart_retrieve - Smart data retrieval
  • copy_data / clear_data

Reports

  • generate_report - Generate FCCS reports
  • get_report_job_status - Async report status

Consolidation

  • export_consolidation_rulesets / import_consolidation_rulesets
  • validate_metadata
  • generate_intercompany_matching_report
  • import_supplementation_data
  • deploy_form_template

Architecture

fccs-mcp-ag-server/
├── fccs_agent/           # Main package
│   ├── agent.py          # Agent orchestration
│   ├── config.py         # Configuration
│   ├── client/           # FCCS HTTP client
│   ├── tools/            # 25+ tool modules
│   └── services/         # Feedback service
├── cli/                  # CLI & MCP server
│   ├── main.py           # Interactive CLI
│   └── mcp_server.py     # MCP stdio server
└── web/                  # FastAPI server
    └── server.py

Deployment

Windows

See WINDOWS_DEPLOYMENT.md for complete Windows deployment guide including:

  • Prerequisites installation
  • Automated setup scripts
  • Windows Service configuration
  • Troubleshooting

Docker

docker build -t fccs-agent .
docker run -p 8080:8080 --env-file .env fccs-agent

Google Cloud Run

gcloud run deploy fccs-agent \
  --source . \
  --region us-central1 \
  --allow-unauthenticated \
  --set-env-vars FCCS_MOCK_MODE=true

See QUICK_DEPLOY.md for detailed Cloud Run deployment.

Feedback System

The agent tracks tool executions for reinforcement learning:

  • Automatic: Execution time, success/failure, errors
  • User Feedback: 1-5 rating via /feedback endpoint
  • Metrics: Aggregated stats via /metrics endpoint

Documentation

License

MIT #� �f�c�c�s�-�m�c�p�-�a�g�-�s�e�r�v�e�r� � �

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured