
FastMCP
A lightweight Model Context Protocol server that enables creating, managing, and querying model contexts with integrated Datadog metrics and monitoring.
README
FastMCP - Model Context Protocol Server
A lightweight Model Context Protocol (MCP) server implemented with FastMCP, a fast and Pythonic framework for building MCP servers and clients.
Features
- Create, retrieve, update, and delete model contexts
- Query execution against specific contexts
- Filtering by model name and tags
- In-memory storage (for development)
- FastMCP integration for easy MCP server development
- Datadog integration for metrics and monitoring
Requirements
- Python 3.7+
- FastMCP
- uv (recommended for environment management)
- Datadog account (optional, for metrics)
Installation
Using uv (Recommended)
The simplest way to install is using the provided scripts:
Unix/Linux/macOS
# Clone the repository
git clone https://github.com/yourusername/datadog-mcp-server.git
cd datadog-mcp-server
# Make the install script executable
chmod +x install.sh
# Run the installer
./install.sh
Windows
# Clone the repository
git clone https://github.com/yourusername/datadog-mcp-server.git
cd datadog-mcp-server
# Run the installer
.\install.ps1
Manual Installation
# Clone the repository
git clone https://github.com/yourusername/datadog-mcp-server.git
cd datadog-mcp-server
# Create and activate a virtual environment with uv
uv venv
# On Unix/Linux/macOS:
source .venv/bin/activate
# On Windows:
.\.venv\Scripts\activate
# Install dependencies
uv pip install -r requirements.txt
Datadog Configuration
The server integrates with Datadog for metrics and monitoring. You can configure Datadog API credentials in several ways:
1. Environment Variables
Set these environment variables before starting the server:
# Unix/Linux/macOS
export DATADOG_API_KEY=your_api_key
export DATADOG_APP_KEY=your_app_key # Optional
export DATADOG_SITE=datadoghq.com # Optional, default: datadoghq.com
# Windows PowerShell
$env:DATADOG_API_KEY = 'your_api_key'
$env:DATADOG_APP_KEY = 'your_app_key' # Optional
$env:DATADOG_SITE = 'datadoghq.com' # Optional
2. .env File
Create a .env
file in the project directory:
DATADOG_API_KEY=your_api_key
DATADOG_APP_KEY=your_app_key
DATADOG_SITE=datadoghq.com
3. FastMCP CLI Installation
When installing as a Claude Desktop tool, you can pass environment variables:
fastmcp install mcp_server.py --name "Model Context Server" -v DATADOG_API_KEY=your_api_key
4. Runtime Configuration
Use the configure_datadog
tool at runtime:
result = await client.call_tool("configure_datadog", {
"api_key": "your_api_key",
"app_key": "your_app_key", # Optional
"site": "datadoghq.com" # Optional
})
Usage
Starting the Server
# Start directly from activated environment
python mcp_server.py
# Or use uv run (no activation needed)
uv run python mcp_server.py
# Use FastMCP CLI for development (if in activated environment)
fastmcp dev mcp_server.py
# Use FastMCP CLI with uv (no activation needed)
uv run -m fastmcp dev mcp_server.py
Installing as a Claude Desktop Tool
# From activated environment
fastmcp install mcp_server.py --name "Model Context Server"
# Using uv directly
uv run python -m fastmcp install mcp_server.py --name "Model Context Server"
# With Datadog API key
fastmcp install mcp_server.py --name "Model Context Server" -v DATADOG_API_KEY=your_api_key
Using the Tools
The server provides the following tools:
create_context
- Create a new contextget_context
- Retrieve a specific contextupdate_context
- Update an existing contextdelete_context
- Delete a contextlist_contexts
- List all contexts (with optional filtering)query_model
- Execute a query against a specific contexthealth_check
- Server health checkconfigure_datadog
- Configure Datadog integration at runtime
Example Requests
Creating a Context
result = await client.call_tool("create_context", {
"context_id": "model-123",
"model_name": "gpt-3.5",
"data": {
"parameters": {
"temperature": 0.7
}
},
"tags": ["production", "nlp"]
})
Executing a Query
result = await client.call_tool("query_model", {
"context_id": "model-123",
"query_data": {
"prompt": "Hello, world!"
}
})
Configuring Datadog
result = await client.call_tool("configure_datadog", {
"api_key": "your_datadog_api_key",
"app_key": "your_datadog_app_key", # Optional
"site": "datadoghq.com" # Optional
})
Datadog Metrics
The server reports the following metrics to Datadog:
mcp.contexts.created
- Context creation eventsmcp.contexts.updated
- Context update eventsmcp.contexts.deleted
- Context deletion eventsmcp.contexts.accessed
- Context access eventsmcp.contexts.total
- Total number of contextsmcp.contexts.listed
- List contexts operation eventsmcp.queries.executed
- Query execution eventsmcp.server.startup
- Server startup eventsmcp.server.shutdown
- Server shutdown events
Development
See the included mcp_example.py
for a client implementation example:
# Run the example client (with activated environment)
python mcp_example.py
# Run with uv (no activation needed)
uv run python mcp_example.py
License
MIT
Resources
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.