FastMCP Documentation Search Server

FastMCP Documentation Search Server

Enables intelligent search through FastMCP documentation using TF-IDF indexing, along with utility tools for arithmetic operations, text hashing, and web page content extraction via Jina Reader.

Category
Visit Server

README

FastMCP Search Server 🚀

Português | English


Português

Servidor baseado no protocolo MCP (Model Context Protocol) projetado para fornecer uma infraestrutura de Arquitetura de Acesso + Contexto. Este sistema permite que Agentes de IA estendam suas capacidades através de ferramentas locais e recuperação de dados especializados sem a necessidade de processamento de LLM no lado do servidor.

🏗️ Arquitetura e Funcionamento

O sistema opera como uma camada intermediária de inteligência local, automatizando a busca e o processamento de dados para injetar apenas o necessário na janela de contexto do cliente.

graph TD
    User((Usuário)) --> Client[MCP Client / Interface]
    
    subgraph "Camada de Comunicação"
        Client <==> Protocol(MCP Protocol)
    end
    
    subgraph "FastMCP Server (Infraestrutura Local)"
        Protocol <==> Tools{Motor de Ferramentas}
        Tools --> Index[minsearch / TF-IDF]
        Tools --> Scraping[Jina Reader]
        Tools --> Logic[Lógica Local]
    end
    
    Index --- Docs[(Documentação Local)]
    Scraping --- Web((Web))

🛠️ Ferramentas, Inputs e Outputs

Ferramenta Descrição Input Output
search_docs Busca semântica inteligente usando TF-IDF. query (string) Lista dos 5 documentos mais relevantes com preview.
scrape_page Web scraping otimizado para IA. url (string) Conteúdo da página em Markdown limpo.
hash_text Geração de hash para integridade. text (string) String SHA-256 hexadecimal.
add Operação aritmética precisa. a (int), b (int) Soma literal dos números.

💻 Stack Tecnológica

  • FastMCP: Framework principal para orquestração do protocolo.
  • minsearch: Motor de busca minimalista para indexação in-memory.
  • Scikit-learn & Pandas: Vetorização e manipulação de dados estruturados.
  • Jina Reader API: Conversão de HTML para Markdown legível por IA.

🚀 Instalação

# Clone o repositório e instale as dependências
uv sync

# Execute o servidor
uv run python main.py

English

A server based on the Model Context Protocol (MCP) designed to provide an Architecture of Access + Context. This system allows AI Agents to extend their capabilities through local tools and specialized data retrieval without the need for LLM processing on the server side.

🏗️ Architecture and Workflow

The system operates as an intermediate layer of local intelligence, automating data search and processing to inject only what is necessary into the client's context window.

graph TD
    User((User)) --> Client[MCP Client / Interface]
    
    subgraph "Communication Layer"
        Client <==> Protocol(MCP Protocol)
    end
    
    subgraph "FastMCP Server (Local Infrastructure)"
        Protocol <==> Tools{Tools Engine}
        Tools --> Index[minsearch / TF-IDF]
        Tools --> Scraping[Jina Reader]
        Tools --> Logic[Local Logic]
    end
    
    Index --- Docs[(Local Docs)]
    Scraping --- Web((Web))

🛠️ Tools, Inputs, and Outputs

Tool Description Input Output
search_docs Intelligent semantic search using TF-IDF. query (string) List of the 5 most relevant docs with content preview.
scrape_page AI-optimized web scraping. url (string) Page content in clean Markdown.
hash_text Hash generation for data integrity. text (string) SHA-256 hexadecimal string.
add Precise arithmetic operation. a (int), b (int) Literal sum of the numbers.

💻 Technical Stack

  • FastMCP: Core framework for protocol orchestration.
  • minsearch: Minimalist search engine for in-memory indexing.
  • Scikit-learn & Pandas: Vectorization and structured data handling.
  • Jina Reader API: HTML to AI-readable Markdown conversion.

🚀 Getting Started

# Clone the repository and install dependencies
uv sync

# Run the server
uv run python main.py

📝 Conclusão / Conclusion

Este projeto demonstra a viabilidade de construir camadas de suporte para agentes de IA que priorizam a eficiência e a soberania dos dados. Ao utilizar o protocolo MCP, removemos a fricção entre bases de dados locais e modelos globais, garantindo que o contexto injetado seja preciso, relevante e processado de forma otimizada.

This project demonstrates the feasibility of building support layers for AI agents that prioritize efficiency and data sovereignty. By using the MCP protocol, we remove the friction between local databases and global models, ensuring that the injected context is accurate, relevant, and optimally processed.


Developed as part of the AI Dev Bootcamp.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured