FastMCP

FastMCP

FastMCP is a comprehensive MCP server allowing secure and standardized data and functionality exposure to LLM applications, offering resources, tools, and prompt management for efficient LLM interactions.

wanderingnature

Category.security-and-iam
Developer Tools
OS Automation
Visit Server

README

MCP Python SDK

<div align="center">

<strong>Python implementation of the Model Context Protocol (MCP)</strong>

PyPI MIT licensed Python Version Documentation Specification GitHub Discussions

</div>

<!-- omit in toc -->

Table of Contents

Overview

The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:

  • Build MCP clients that can connect to any MCP server
  • Create MCP servers that expose resources, prompts and tools
  • Use standard transports like stdio and SSE
  • Handle all MCP protocol messages and lifecycle events

Installation

We recommend using uv to manage your Python projects:

uv add "mcp[cli]"

Alternatively:

pip install mcp

Quickstart

Let's create a simple MCP server that exposes a calculator tool and some data:

# server.py
from mcp.server.fastmcp import FastMCP

# Create an MCP server
mcp = FastMCP("Demo")

# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
    """Add two numbers"""
    return a + b

# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
    """Get a personalized greeting"""
    return f"Hello, {name}!"

You can install this server in Claude Desktop and interact with it right away by running:

mcp install server.py

Alternatively, you can test it with the MCP Inspector:

mcp dev server.py

What is MCP?

The Model Context Protocol (MCP) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:

  • Expose data through Resources (think of these sort of like GET endpoints; they are used to load information into the LLM's context)
  • Provide functionality through Tools (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
  • Define interaction patterns through Prompts (reusable templates for LLM interactions)
  • And more!

Core Concepts

Server

The FastMCP server is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:

from mcp.server.fastmcp import FastMCP

# Create a named server
mcp = FastMCP("My App")

# Specify dependencies for deployment and development
mcp = FastMCP("My App", dependencies=["pandas", "numpy"])

Resources

Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:

@mcp.resource("config://app")
def get_config() -> str:
    """Static configuration data"""
    return "App configuration here"

@mcp.resource("users://{user_id}/profile")
def get_user_profile(user_id: str) -> str:
    """Dynamic user data"""
    return f"Profile data for user {user_id}"

Tools

Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:

@mcp.tool()
def calculate_bmi(weight_kg: float, height_m: float) -> float:
    """Calculate BMI given weight in kg and height in meters"""
    return weight_kg / (height_m ** 2)

@mcp.tool()
async def fetch_weather(city: str) -> str:
    """Fetch current weather for a city"""
    async with httpx.AsyncClient() as client:
        response = await client.get(f"https://api.weather.com/{city}")
        return response.text

Prompts

Prompts are reusable templates that help LLMs interact with your server effectively:

@mcp.prompt()
def review_code(code: str) -> str:
    return f"Please review this code:\n\n{code}"

@mcp.prompt()
def debug_error(error: str) -> list[Message]:
    return [
        UserMessage("I'm seeing this error:"),
        UserMessage(error),
        AssistantMessage("I'll help debug that. What have you tried so far?")
    ]

Images

FastMCP provides an Image class that automatically handles image data:

from mcp.server.fastmcp import FastMCP, Image
from PIL import Image as PILImage

@mcp.tool()
def create_thumbnail(image_path: str) -> Image:
    """Create a thumbnail from an image"""
    img = PILImage.open(image_path)
    img.thumbnail((100, 100))
    return Image(data=img.tobytes(), format="png")

Context

The Context object gives your tools and resources access to MCP capabilities:

from mcp.server.fastmcp import FastMCP, Context

@mcp.tool()
async def long_task(files: list[str], ctx: Context) -> str:
    """Process multiple files with progress tracking"""
    for i, file in enumerate(files):
        ctx.info(f"Processing {file}")
        await ctx.report_progress(i, len(files))
        data = await ctx.read_resource(f"file://{file}")
    return "Processing complete"

Running Your Server

Development Mode

The fastest way to test and debug your server is with the MCP Inspector:

mcp dev server.py

# Add dependencies
mcp dev server.py --with pandas --with numpy

# Mount local code
mcp dev server.py --with-editable .

Claude Desktop Integration

Once your server is ready, install it in Claude Desktop:

mcp install server.py

# Custom name
mcp install server.py --name "My Analytics Server"

# Environment variables
mcp install server.py -v API_KEY=abc123 -v DB_URL=postgres://...
mcp install server.py -f .env

Direct Execution

For advanced scenarios like custom deployments:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("My App")

if __name__ == "__main__":
    mcp.run()

Run it with:

python server.py
# or
mcp run server.py

Examples

Echo Server

A simple server demonstrating resources, tools, and prompts:

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("Echo")

@mcp.resource("echo://{message}")
def echo_resource(message: str) -> str:
    """Echo a message as a resource"""
    return f"Resource echo: {message}"

@mcp.tool()
def echo_tool(message: str) -> str:
    """Echo a message as a tool"""
    return f"Tool echo: {message}"

@mcp.prompt()
def echo_prompt(message: str) -> str:
    """Create an echo prompt"""
    return f"Please process this message: {message}"

SQLite Explorer

A more complex example showing database integration:

from mcp.server.fastmcp import FastMCP
import sqlite3

mcp = FastMCP("SQLite Explorer")

@mcp.resource("schema://main")
def get_schema() -> str:
    """Provide the database schema as a resource"""
    conn = sqlite3.connect("database.db")
    schema = conn.execute(
        "SELECT sql FROM sqlite_master WHERE type='table'"
    ).fetchall()
    return "\n".join(sql[0] for sql in schema if sql[0])

@mcp.tool()
def query_data(sql: str) -> str:
    """Execute SQL queries safely"""
    conn = sqlite3.connect("database.db")
    try:
        result = conn.execute(sql).fetchall()
        return "\n".join(str(row) for row in result)
    except Exception as e:
        return f"Error: {str(e)}"

Advanced Usage

Low-Level Server

For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server:

from mcp.server.lowlevel import Server, NotificationOptions
from mcp.server.models import InitializationOptions
import mcp.server.stdio
import mcp.types as types

# Create a server instance
server = Server("example-server")

@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
    return [
        types.Prompt(
            name="example-prompt",
            description="An example prompt template",
            arguments=[
                types.PromptArgument(
                    name="arg1",
                    description="Example argument",
                    required=True
                )
            ]
        )
    ]

@server.get_prompt()
async def handle_get_prompt(
    name: str,
    arguments: dict[str, Any] | None
) -> types.GetPromptResult:
    if name != "example-prompt":
        raise ValueError(f"Unknown prompt: {name}")

    return types.GetPromptResult(
        description="Example prompt",
        messages=[
            types.PromptMessage(
                role="user",
                content=types.TextContent(
                    type="text",
                    text="Example prompt text"
                )
            )
        ]
    )

async def run():
    async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
        await server.run(
            read_stream,
            write_stream,
            InitializationOptions(
                server_name="example",
                server_version="0.1.0",
                capabilities=server.get_capabilities(
                    notification_options=NotificationOptions(),
                    experimental_capabilities={},
                )
            )
        )

if __name__ == "__main__":
    import asyncio
    asyncio.run(run())

Writing MCP Clients

The SDK provides a high-level client interface for connecting to MCP servers:

from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

# Create server parameters for stdio connection
server_params = StdioServerParameters(
    command="python", # Executable
    args=["example_server.py"], # Optional command line arguments
    env=None # Optional environment variables
)

async def run():
    async with stdio_client(server_params) as (read, write):
        async with ClientSession(read, write) as session:
            # Initialize the connection
            await session.initialize()

            # List available prompts
            prompts = await session.list_prompts()

            # Get a prompt
            prompt = await session.get_prompt("example-prompt", arguments={"arg1": "value"})

            # List available resources
            resources = await session.list_resources()

            # List available tools
            tools = await session.list_tools()

            # Read a resource
            resource = await session.read_resource("file://some/path")

            # Call a tool
            result = await session.call_tool("tool-name", arguments={"arg1": "value"})

if __name__ == "__main__":
    import asyncio
    asyncio.run(run())

MCP Primitives

The MCP protocol defines three core primitives that servers can implement:

Primitive Control Description Example Use
Prompts User-controlled Interactive templates invoked by user choice Slash commands, menu options
Resources Application-controlled Contextual data managed by the client application File contents, API responses
Tools Model-controlled Functions exposed to the LLM to take actions API calls, data updates

Server Capabilities

MCP servers declare capabilities during initialization:

Capability Feature Flag Description
prompts listChanged Prompt template management
resources subscribe<br/>listChanged Resource exposure and updates
tools listChanged Tool discovery and execution
logging - Server logging configuration
completion - Argument completion suggestions

Documentation

Contributing

We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the contributing guide to get started.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
MCP Package Docs Server

MCP Package Docs Server

Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.

Featured
Local
TypeScript
Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.

Featured
Local
JavaScript
Linear MCP Server

Linear MCP Server

Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.

Featured
JavaScript
mermaid-mcp-server

mermaid-mcp-server

A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.

Featured
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP server to provide Jira Tickets information to AI coding agents like Cursor

Featured
TypeScript
Linear MCP Server

Linear MCP Server

A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Featured
JavaScript
VirusTotal MCP Server

VirusTotal MCP Server

A MCP server for querying the VirusTotal API. This server provides tools for scanning URLs, analyzing file hashes, and retrieving IP address reports.

Featured
TypeScript