FastAPI MCP Server

FastAPI MCP Server

Wraps a FastAPI application as an MCP server, enabling user and task management operations through Gemini CLI tool calling with full CRUD functionality.

Category
Visit Server

README

FastAPI + MCP Server Integration with Gemini CLI

This project demonstrates how to build a FastAPI application, wrap it as an MCP (Model Context Protocol) Server, and integrate it with Gemini CLI for direct tool calling.

Project Structure

├── sample_app.py      # FastAPI application with user and task management
├── mcp_server.py      # MCP server that wraps the FastAPI app
├── requirements.txt   # Python dependencies
├── setup.sh          # Setup script
├── demo.sh           # Interactive demonstration script
├── test_integration.py # Integration test script
├── venv/             # Python virtual environment
└── README.md         # This file

Features

FastAPI Application (sample_app.py)

  • User Management: Create, read users with name, email, and age
  • Task Management: Create, read, update, delete tasks
  • Statistics: Get overview of users and tasks
  • Health Check: Basic health monitoring endpoint

MCP Server (mcp_server.py)

  • Tool Integration: Exposes all FastAPI endpoints as MCP tools
  • Error Handling: Proper HTTP error handling and logging
  • Type Safety: Full type annotations and schema validation

Available MCP Tools

  1. get_app_info - Get basic app information
  2. get_health - Check app health status
  3. get_users - List all users
  4. create_user - Create a new user
  5. get_user - Get user by ID
  6. get_tasks - List all tasks
  7. create_task - Create a new task
  8. get_task - Get task by ID
  9. update_task - Update an existing task
  10. delete_task - Delete a task
  11. get_stats - Get user and task statistics

Quick Start

Option 1: Automated Demo

./demo.sh

This interactive script will guide you through the entire setup and testing process.

Option 2: Manual Setup

1. Run Setup Script

./setup.sh

2. Start the FastAPI Application

source venv/bin/activate
python sample_app.py

The FastAPI app will be available at http://localhost:8000

3. Start the MCP Server (in another terminal)

source venv/bin/activate
python mcp_server.py

4. Install Gemini CLI

npm install -g @google/gemini-cli@latest

5. Add MCP Server to Gemini CLI

gemini mcp add fastapi-sample stdio python $(pwd)/mcp_server.py

6. Test the Integration

# List available tools
gemini mcp list

# Call a tool
gemini call fastapi-sample get_app_info

# Create a user
gemini call fastapi-sample create_user --name "John Doe" --email "john@example.com" --age 30

# Get all users
gemini call fastapi-sample get_users

# Create a task
gemini call fastapi-sample create_task --title "Learn MCP" --description "Study Model Context Protocol" --user_id 1

# Get statistics
gemini call fastapi-sample get_stats

Manual Setup

If you prefer to set up manually:

1. Install Python Dependencies

pip3 install -r requirements.txt

2. Start Services

  • FastAPI app: python3 sample_app.py
  • MCP server: python3 mcp_server.py

3. Install and Configure Gemini CLI

npm install -g @google/gemini-cli@latest
gemini mcp add fastapi-sample stdio python3 /path/to/mcp_server.py

API Endpoints

The FastAPI application provides the following REST endpoints:

  • GET / - App information
  • GET /health - Health check
  • GET /users - List users
  • POST /users - Create user
  • GET /users/{user_id} - Get user by ID
  • GET /tasks - List tasks
  • POST /tasks - Create task
  • GET /tasks/{task_id} - Get task by ID
  • PUT /tasks/{task_id} - Update task
  • DELETE /tasks/{task_id} - Delete task
  • GET /stats - Get statistics

MCP Tool Examples

Create and Manage Users

# Create a user
gemini call fastapi-sample create_user --name "Alice Smith" --email "alice@example.com" --age 25

# Get user by ID
gemini call fastapi-sample get_user --user_id 1

# List all users
gemini call fastapi-sample get_users

Create and Manage Tasks

# Create a task
gemini call fastapi-sample create_task --title "Complete project" --description "Finish the MCP integration" --user_id 1

# Update a task
gemini call fastapi-sample update_task --task_id 1 --title "Complete project" --description "Finish the MCP integration" --user_id 1 --completed true

# Delete a task
gemini call fastapi-sample delete_task --task_id 1

Get Statistics

gemini call fastapi-sample get_stats

Troubleshooting

Common Issues

  1. Port already in use: Make sure port 8000 is available for the FastAPI app
  2. MCP server connection failed: Ensure the FastAPI app is running before starting the MCP server
  3. Gemini CLI not found: Make sure Node.js and npm are installed, then install Gemini CLI globally

Debug Mode

To run the FastAPI app in debug mode:

uvicorn sample_app:app --reload --host 0.0.0.0 --port 8000

Check MCP Server Status

gemini mcp list

Development

Adding New Endpoints

  1. Add the endpoint to sample_app.py
  2. Add the corresponding tool to mcp_server.py in the handle_list_tools() function
  3. Add the tool handler in the handle_call_tool() function

Testing

You can test the FastAPI endpoints directly using curl:

# Test app info
curl http://localhost:8000/

# Create a user
curl -X POST http://localhost:8000/users \
  -H "Content-Type: application/json" \
  -d '{"name": "Test User", "email": "test@example.com", "age": 30}'

# Get users
curl http://localhost:8000/users

License

This project is for educational purposes and demonstrates MCP integration patterns.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured