FastAPI MCP Server
Wraps a FastAPI application as an MCP server, enabling user and task management operations through Gemini CLI tool calling with full CRUD functionality.
README
FastAPI + MCP Server Integration with Gemini CLI
This project demonstrates how to build a FastAPI application, wrap it as an MCP (Model Context Protocol) Server, and integrate it with Gemini CLI for direct tool calling.
Project Structure
├── sample_app.py # FastAPI application with user and task management
├── mcp_server.py # MCP server that wraps the FastAPI app
├── requirements.txt # Python dependencies
├── setup.sh # Setup script
├── demo.sh # Interactive demonstration script
├── test_integration.py # Integration test script
├── venv/ # Python virtual environment
└── README.md # This file
Features
FastAPI Application (sample_app.py)
- User Management: Create, read users with name, email, and age
- Task Management: Create, read, update, delete tasks
- Statistics: Get overview of users and tasks
- Health Check: Basic health monitoring endpoint
MCP Server (mcp_server.py)
- Tool Integration: Exposes all FastAPI endpoints as MCP tools
- Error Handling: Proper HTTP error handling and logging
- Type Safety: Full type annotations and schema validation
Available MCP Tools
get_app_info- Get basic app informationget_health- Check app health statusget_users- List all userscreate_user- Create a new userget_user- Get user by IDget_tasks- List all taskscreate_task- Create a new taskget_task- Get task by IDupdate_task- Update an existing taskdelete_task- Delete a taskget_stats- Get user and task statistics
Quick Start
Option 1: Automated Demo
./demo.sh
This interactive script will guide you through the entire setup and testing process.
Option 2: Manual Setup
1. Run Setup Script
./setup.sh
2. Start the FastAPI Application
source venv/bin/activate
python sample_app.py
The FastAPI app will be available at http://localhost:8000
3. Start the MCP Server (in another terminal)
source venv/bin/activate
python mcp_server.py
4. Install Gemini CLI
npm install -g @google/gemini-cli@latest
5. Add MCP Server to Gemini CLI
gemini mcp add fastapi-sample stdio python $(pwd)/mcp_server.py
6. Test the Integration
# List available tools
gemini mcp list
# Call a tool
gemini call fastapi-sample get_app_info
# Create a user
gemini call fastapi-sample create_user --name "John Doe" --email "john@example.com" --age 30
# Get all users
gemini call fastapi-sample get_users
# Create a task
gemini call fastapi-sample create_task --title "Learn MCP" --description "Study Model Context Protocol" --user_id 1
# Get statistics
gemini call fastapi-sample get_stats
Manual Setup
If you prefer to set up manually:
1. Install Python Dependencies
pip3 install -r requirements.txt
2. Start Services
- FastAPI app:
python3 sample_app.py - MCP server:
python3 mcp_server.py
3. Install and Configure Gemini CLI
npm install -g @google/gemini-cli@latest
gemini mcp add fastapi-sample stdio python3 /path/to/mcp_server.py
API Endpoints
The FastAPI application provides the following REST endpoints:
GET /- App informationGET /health- Health checkGET /users- List usersPOST /users- Create userGET /users/{user_id}- Get user by IDGET /tasks- List tasksPOST /tasks- Create taskGET /tasks/{task_id}- Get task by IDPUT /tasks/{task_id}- Update taskDELETE /tasks/{task_id}- Delete taskGET /stats- Get statistics
MCP Tool Examples
Create and Manage Users
# Create a user
gemini call fastapi-sample create_user --name "Alice Smith" --email "alice@example.com" --age 25
# Get user by ID
gemini call fastapi-sample get_user --user_id 1
# List all users
gemini call fastapi-sample get_users
Create and Manage Tasks
# Create a task
gemini call fastapi-sample create_task --title "Complete project" --description "Finish the MCP integration" --user_id 1
# Update a task
gemini call fastapi-sample update_task --task_id 1 --title "Complete project" --description "Finish the MCP integration" --user_id 1 --completed true
# Delete a task
gemini call fastapi-sample delete_task --task_id 1
Get Statistics
gemini call fastapi-sample get_stats
Troubleshooting
Common Issues
- Port already in use: Make sure port 8000 is available for the FastAPI app
- MCP server connection failed: Ensure the FastAPI app is running before starting the MCP server
- Gemini CLI not found: Make sure Node.js and npm are installed, then install Gemini CLI globally
Debug Mode
To run the FastAPI app in debug mode:
uvicorn sample_app:app --reload --host 0.0.0.0 --port 8000
Check MCP Server Status
gemini mcp list
Development
Adding New Endpoints
- Add the endpoint to
sample_app.py - Add the corresponding tool to
mcp_server.pyin thehandle_list_tools()function - Add the tool handler in the
handle_call_tool()function
Testing
You can test the FastAPI endpoints directly using curl:
# Test app info
curl http://localhost:8000/
# Create a user
curl -X POST http://localhost:8000/users \
-H "Content-Type: application/json" \
-d '{"name": "Test User", "email": "test@example.com", "age": 30}'
# Get users
curl http://localhost:8000/users
License
This project is for educational purposes and demonstrates MCP integration patterns.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.