FastAPI MCP Demo Server
A demonstration MCP server built with FastAPI that provides basic mathematical operations and greeting services. Integrates with Gemini CLI to showcase MCP protocol implementation with simple REST endpoints.
README
MCP Server using FAST MCP
This is a sample MCP Server built using FastAPI and integrated with Gemini CLI.
Repository: git@github.com:MAIMOONA-ISLAM/MCP-Server-using-FAST-MCP.git
Features
- FastAPI Web Server with REST endpoints
- MCP Protocol Server for Gemini CLI integration
- Mathematical Operations (sum calculation)
- Greeting Service (personalized greetings)
Project Structure
mcp_fastapi_server/ .gemini/ settings.json # Gemini settings demo/ README.md # Demo documentation screen_recording(1).mp4 # Demo video __pycache__/ # Python cache files .gitattributes # Git attributes .gitignore # Git ignore rules main.py # FastAPI web server mcp_config.json # Gemini CLI configuration README.md # This file requirements.txt # Python dependencies simple_mcp_server.py # Simple MCP protocol server
Setup Instructions
1. Install Dependencies
ash pip install -r requirements.txt
2. Run FastAPI Server
ash uvicorn main:app --reload --port 8000
The server will be available at: http://localhost:8000
API Documentation: http://localhost:8000/docs
3. Test MCP Server
ash python simple_mcp_server.py
4. Configure Gemini CLI
Copy the mcp_config.json to your Gemini CLI configuration directory:
`ash
On Windows
copy mcp_config.json %APPDATA%\gemini\mcp_config.json
On macOS/Linux
cp mcp_config.json ~/.config/gemini/mcp_config.json `
Available Endpoints
FastAPI Endpoints
- GET / - Server status
- POST /sum - Calculate sum of two numbers
- POST /greet - Generate greeting message
MCP Tools
- calculate_sum - Calculate sum of two numbers
- greet_user - Generate personalized greeting
Usage Examples
FastAPI Usage
`ash
Test sum endpoint
curl -X POST "http://localhost:8000/sum"
-H "Content-Type: application/json"
-d '{"a": 5, "b": 3}'
Test greet endpoint
curl -X POST "http://localhost:8000/greet"
-H "Content-Type: application/json"
-d '{"name": "World"}'
`
Gemini CLI Usage
`ash
List available MCP tools
gemini mcp list
Use MCP tools
gemini mcp call calculate_sum --a 5 --b 3 gemini mcp call greet_user --name "Alice" `
Demo
Check out the demo/ folder for:
- Screen recording demonstrating the MCP server in action
- Additional demo documentation
- Examples of server setup and Gemini CLI MCP commands
Requirements
See requirements.txt for the full list of Python dependencies.
License
This project is open source and available for educational purposes.
Contributing
Feel free to submit issues and enhancement requests!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.