
FastAPI CRUD MCP
A minimal CRUD API for items that exposes FastAPI endpoints as MCP tools, enabling natural language interaction with a database through PydanticAI agents.
README
FastAPI CRUD MCP
A minimal CRUD API for “items,” built with FastAPI and exposed as MCP tools via FastAPI-MCP. Includes a scenario-driven client harness using PydanticAI and Rich.
🚀 Features
- FastAPI: high-performance HTTP API
- SQLAlchemy + Pydantic: ORM models + input/output schemas
- FastAPI-MCP: auto-expose your endpoints as MCP tools (
/mcp/tools
,/mcp/events
) - Rich CLI: beautiful, colored terminal output for scenario runs
- Scenario Runner: client harness that drives and validates your API via PydanticAI agents
- SQLite backend for demo; easily swap to PostgreSQL, MySQL, etc.
📦 Project Layout
.
├── backend
│ ├── server
│ │ ├── main.py # FastAPI + FastAPI-MCP wiring
│ │ ├── models.py # SQLAlchemy + Pydantic schemas
│ │ ├── routes.py # CRUD endpoints
│ │ ├── crud.py # DB operations
│ │ ├── db.py # session & engine
│ │ └── logger.py # stdlib logging setup
│ └── client
│ ├── scenarios.py # Scenario definitions
│ └── main.py # run\_scenarios.py harness
├── .env # example environment variables
├── pyproject.toml # Project dependencies
└── README.md # this file
⚙️ Installation & Setup
-
Clone & enter directory
git clone https://github.com/yourusername/fastapi-crud-mcp.git cd fastapi-crud-mcp
-
Create & activate a virtualenv
uv venv source .venv/bin/activate
-
Install dependencies
uv sync
-
Environment variables Copy the example and adjust if needed:
cp .env.example .env
MCP_HOST_URL='http://127.0.0.1:8000/mcp' LLM_PROVIDER='openai' LLM_MODEL_NAME='gpt-4o-mini' LLM_MODEL=${LLM_PROVIDER}:${LLM_MODEL_NAME} OPENAI_API_KEY=sk-proj-your-api-key-here
🏃 Running the Server
docker compose up -d --build
- API docs →
http://localhost:8000/docs
- OpenAPI JSON →
http://localhost:8000/openapi.json
🤖 Running the Scenario Client
python3 -m backend.client.main
This harness will:
- Load your
.env
settings - Spin up a PydanticAI agent against
MCP_HOST_URL
- Execute each scenario (create/list/get/update/delete)
- Display rich panels for prompts & outputs
🚨 Notes & Tips
- Switch DB: edit
backend/server/db.py
for PostgreSQL or MySQL. - Add auth: protect
/mcp
or/api
via FastAPI dependencies. - Extend scenarios: drop new entries into
backend/client/scenarios.py
. - Production: add Alembic for migrations, and monitor with Prometheus.
🤝 Contributing
-
Fork 🔱
-
Create a feature branch:
git checkout -b feature/my-feature
-
Commit & push:
git commit -am "Add awesome feature" git push origin feature/my-feature
-
Open a PR and we’ll review!
📄 License
This project is MIT-licensed—see the LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.